

Empirical Algorithmics

MIE1666: Machine Learning for Mathematical Optimization

Largely based on the book Stochastic Local Search by Hoos and Stützle and related slides by the authors Some slides from Algorithm Design by Kleinberg and Tardos

$$F:=(
eg x_1 ee x_2) \ \land (
eg x_2 ee x_1) \ \land (
eg x_1 ee
eg x_2 ee
eg x_3) \ \land (x_1 ee x_2) \ \land (x_1 ee x_3) \ \land (
eg x_4 ee x_3) \ \land (
eg x_5 ee x_3)$$

 $C := \{\top, \bot\}$ the set of truth values (or propositional constants) true and false, and $O := \{\neg, \land, \lor\}$ the set of propositional operators negation ('not'), conjunction ('and') and disjunction ('or').

EXAMPLE I.I A Simple SAT Instance

Let us consider the following propositional formula in CNF:

$$F := (\neg x_1 \lor x_2)$$

$$\land (\neg x_2 \lor x_1)$$

$$\land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (x_1 \lor x_2)$$

$$\land (\neg x_4 \lor x_3)$$

$$\land (\neg x_5 \lor x_3)$$

For this formula, we obtain the variable set $Var(F) = \{x_1, x_2, x_3, x_4, x_5\}$; consequently, there are $2^5 = 32$ different variable assignments. Exactly one of these, $x_1 = x_2 = \top, x_3 = x_4 = x_5 = \bot$, is a model, rendering F satisfiable.

 $C := \{\top, \bot\}$ the set of truth values (or propositional constants) true and false, and $O := \{\neg, \land, \lor\}$ the set of propositional operators negation ('not'), conjunction ('and') and disjunction ('or').

Example of a (greedy) construction heuristic for SAT

- start with an empty variable assignment
- in each step select an unassigned variable and set it to a truth value
 - if ∃ unsatisfied clause with only one unassigned variable,
 assign this variable to satisfy this clause
 - otherwise choose variable and truth value such that maximal number of clauses become satisfied

$$F := (\neg x_1 \lor x_2)$$

$$\land (\neg x_2 \lor x_1)$$

$$\land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (x_1 \lor x_2)$$

$$\land (\neg x_4 \lor x_3)$$

$$\land (\neg x_5 \lor x_3)$$

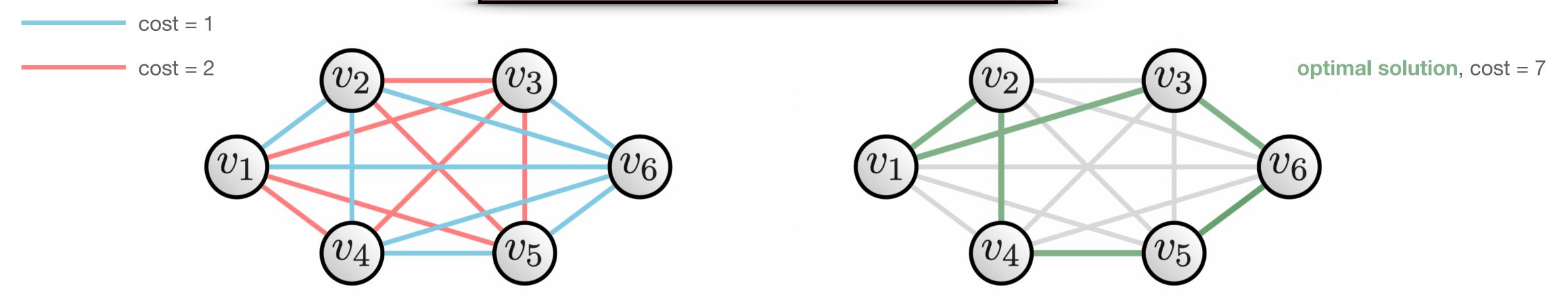
Hoos / Stützle

Stochastic Search Algorithms

38

 $C := \{\top, \bot\}$ the set of truth values (or propositional constants) true and false, and $O := \{\neg, \land, \lor\}$ the set of propositional operators negation ('not'), conjunction ('and') and disjunction ('or').

Graph Optimization



Travelling Salesperson Problem (TSP)

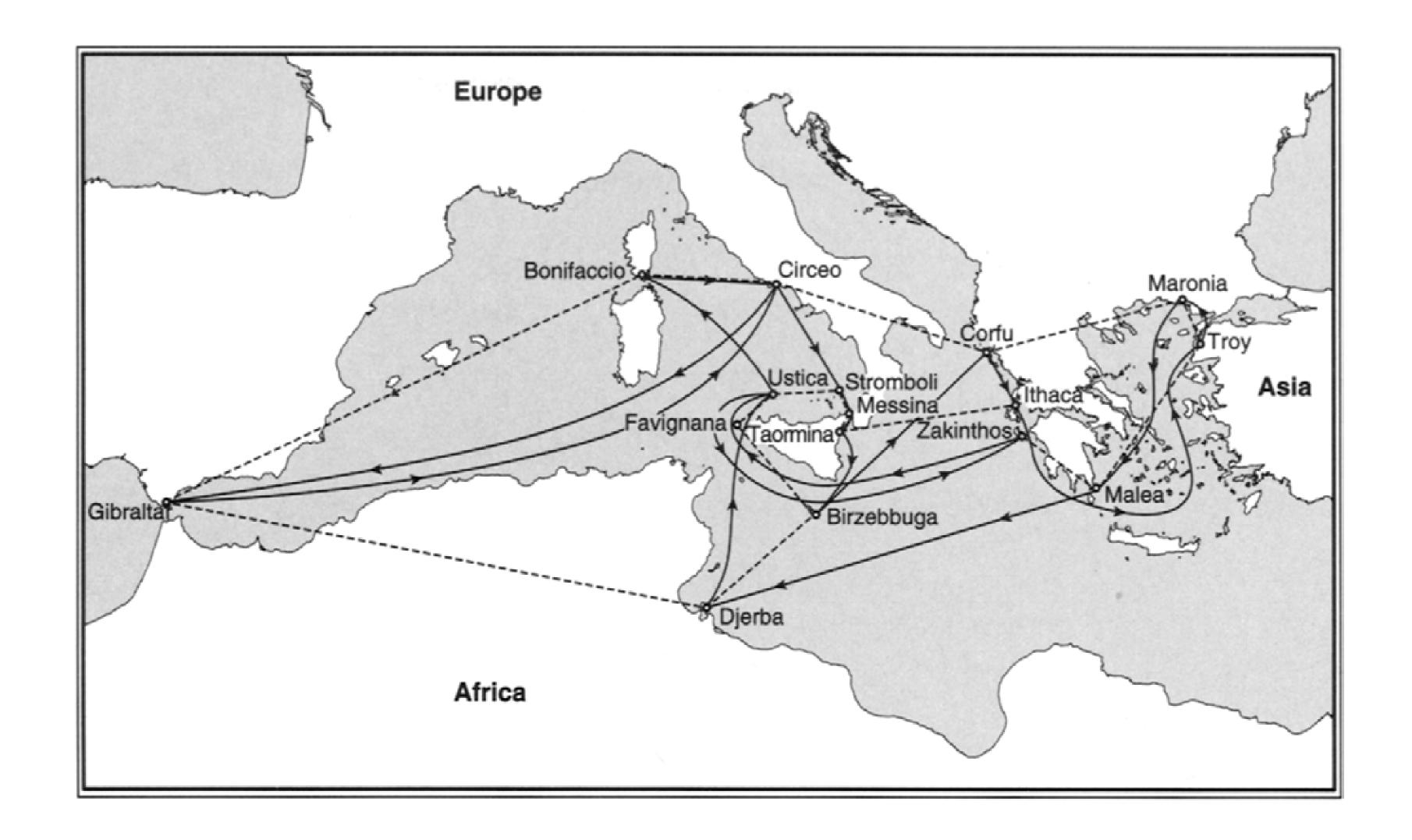
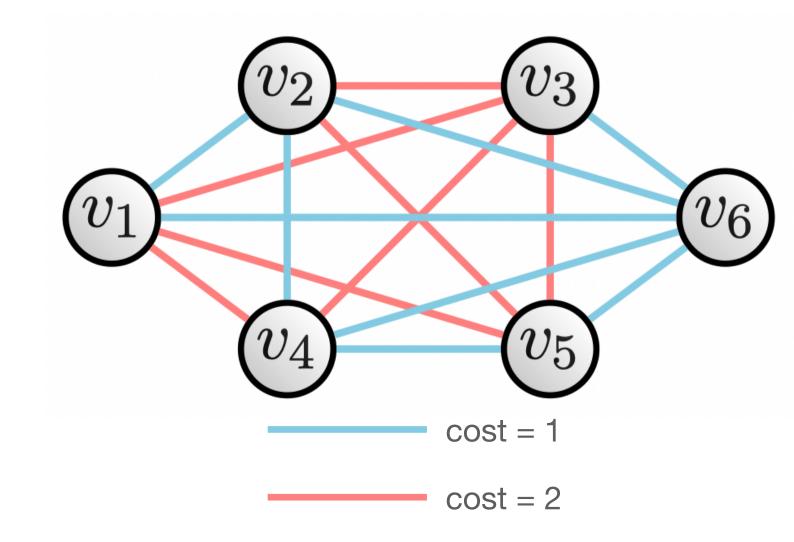


Figure 1.1 A graphic representation of the geographic TSP instance 'ulysses16' and its optimal solution (dashed line); the solid line and arrows indicate the sequence in which Homer's Ulysses supposedly visited the 16 locations. See Example 1.2 for details.

Nearest Neighbour heuristic for the TSP:

- always choose at the current city the closest unvisited city
 - choose an arbitrary initial city $\pi(1)$
 - at the ith step choose city $\pi(i+1)$ to be the city j that minimises $\{d(\pi(i),j)\}; j \neq \pi(k), 1 \leq k \leq i$
- running time $\mathcal{O}(n^2)$
- worst case performance $NN(x)/OPT(x) \leq 0.5(\lceil \log_2 n \rceil + 1)$
- other construction heuristics for TSP are available

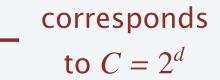


Polynomial running time

Desirable scaling property. When the input size doubles, the algorithm should slow down by at most some multiplicative constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exist constants c>0 and d>0 such that, for every input of size n, the running time of the algorithm is bounded above by $c\,n^d$ primitive computational steps.



von Neumann (1953)

Nash (1955)

Gödel (1956)

Cobham (1964)

Edmonds (1965)

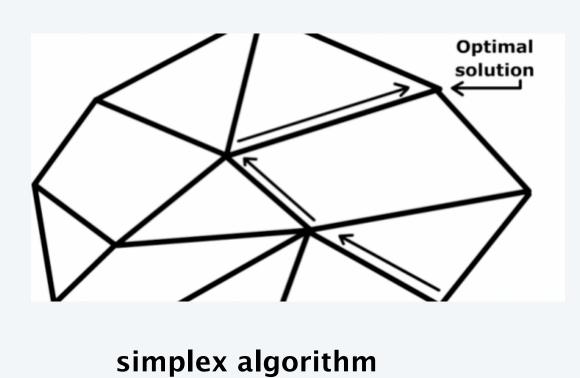
Rabin (1966)

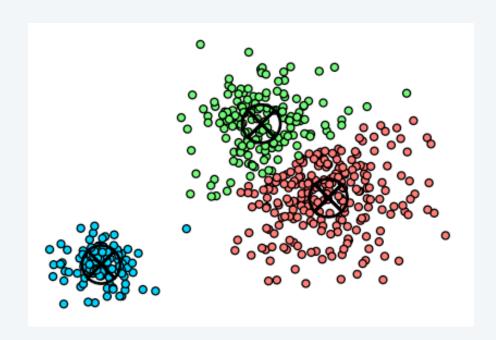
Worst-case analysis

Worst case. Running time guarantee for any input of size *n*.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice because the worst-case instances don't arise.





Linux grep

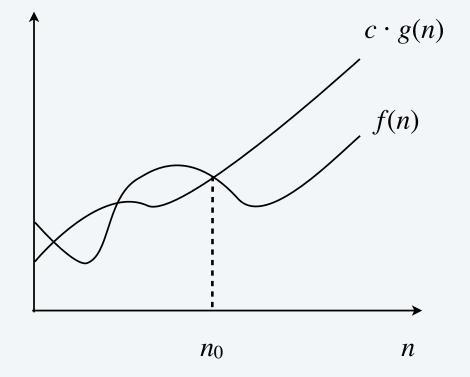
k-means algorithm

Big O notation

Upper bounds. f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Ex.
$$f(n) = 32n^2 + 17n + 1$$
.

- f(n) is $O(n^2)$. \leftarrow choose $c = 50, n_0 = 1$
- f(n) is neither O(n) nor $O(n \log n)$.



Typical usage. Insertion sort makes $O(n^2)$ compares to sort n elements.

Analysis of algorithms: quiz 1

Let $f(n) = 3n^2 + 17 n \log_2 n + 1000$. Which of the following are true?

- A. f(n) is $O(n^2)$.
- **B.** f(n) is $O(n^3)$.
- C. Both A and B.
- D. Neither A nor B.

Polynomial time

Polynomial time. Running time is $O(n^k)$ for some constant k > 0.

Independent set of size k. Given a graph, find k nodes such that no two are joined by an edge.

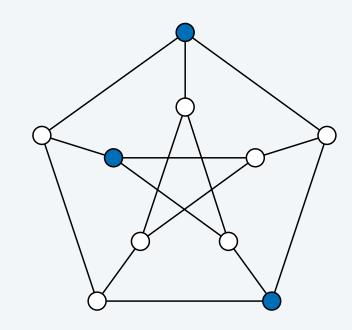
 $O(n^k)$ algorithm. Enumerate all subsets of k nodes.

FOREACH subset S of k nodes:

Check whether S is an independent set.

IF (S is an independent set)

RETURN S.



k is a constant

independent set of size 3

- Check whether S is an independent set of size k takes $O(k^2)$ time.
- Number of k-element subsets = $\binom{n}{k} = \frac{n(n-1)(n-2) \times \cdots \times (n-k+1)}{k(k-1)(k-2) \times \cdots \times 1} \le \frac{n^k}{k!}$
- $O(k^2 n^k / k!) = O(n^k)$.

Exponential time

Exponential time. Running time is $O(2^{n^k})$ for some constant k > 0.

Independent set. Given a graph, find independent set of max cardinality.

 $O(n^2 2^n)$ algorithm. Enumerate all subsets of n elements.

$$S^* \leftarrow \emptyset$$
.

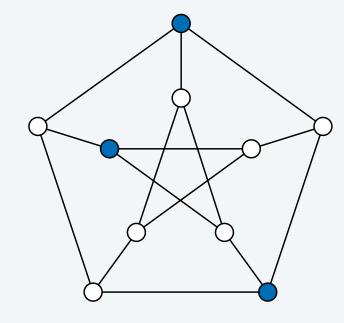
FOREACH subset *S* of *n* nodes:

Check whether S is an independent set.

IF (S is an independent set and $|S| > |S^*|$)

$$S^* \leftarrow S$$
.

RETURN S^* .



independent set of max cardinality

Exponential time

Exponential time. Running time is $O(2^{n^k})$ for some constant k > 0.

Euclidean TSP. Given *n* points in the plane, find a tour of minimum length.

 $O(n \times n!)$ algorithm. Enumerate all permutations of length n.

$$\pi^* \leftarrow \emptyset$$
.

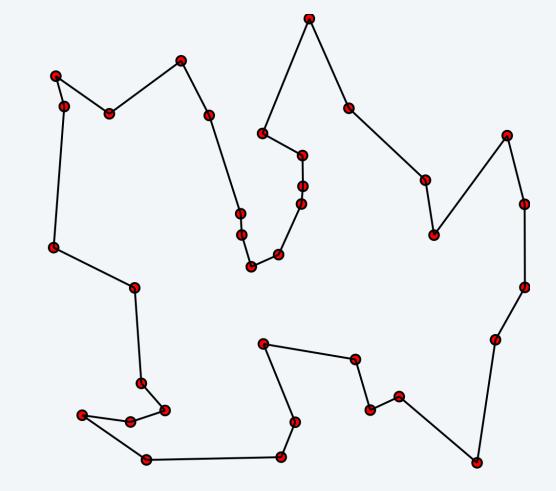
FOREACH permutation π of n points:

Compute length of tour corresponding to π .

IF
$$(\operatorname{length}(\pi) < \operatorname{length}(\pi^*))$$

$$\pi^* \leftarrow \pi$$
.

RETURN π^* . for simplicity, we'll assume Euclidean distances are rounded to nearest integer (to avoid issues with infinite precision)



Example of a (greedy) construction heuristic for SAT

- start with an empty variable assignment
- in each step select an unassigned variable and set it to a truth value
 - if \exists unsatisfied clause with only one unassigned variable, assign this variable to satisfy this clause
 - otherwise choose variable and truth value such that
 maximal number of clauses become satisfied

$$F := (\neg x_1 \lor x_2)$$

$$\land (\neg x_2 \lor x_1)$$

$$\land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (x_1 \lor x_2)$$

$$\land (\neg x_4 \lor x_3)$$

$$\land (\neg x_5 \lor x_3)$$

Iterative Improvement for SAT

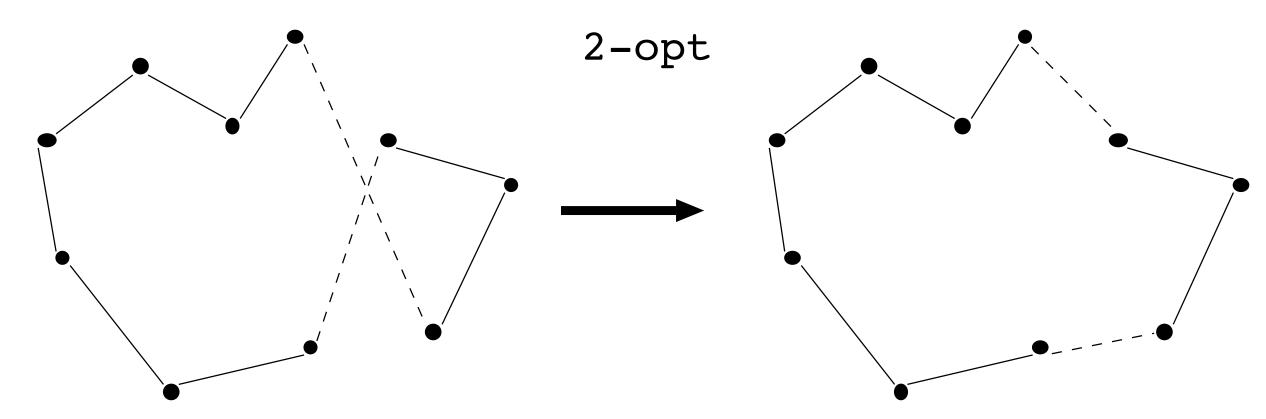
- initialisation: randomly chosen, complete truth assignment
- neighbourhood: variable assignments are neighbours iff they differ in truth value of one variable
- objective function: number of clauses unsatisfied under given assignment

Nearest Neighbour heuristic for the TSP:

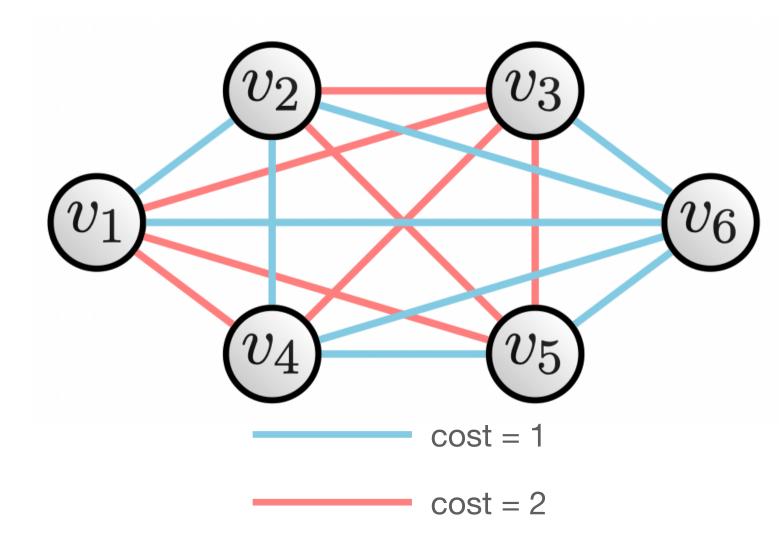
- always choose at the current city the closest unvisited city
 - choose an arbitrary initial city $\pi(1)$
 - at the *i*th step choose city $\pi(i+1)$ to be the city *j* that minimises $\{d(\pi(i),j)\}; j \neq \pi(k), 1 \leq k \leq i$

Iterative Improvement for the TSP

- initial solution is a complete tour
- k-opt neighbourhood: solutions which differ by at most k edges



16

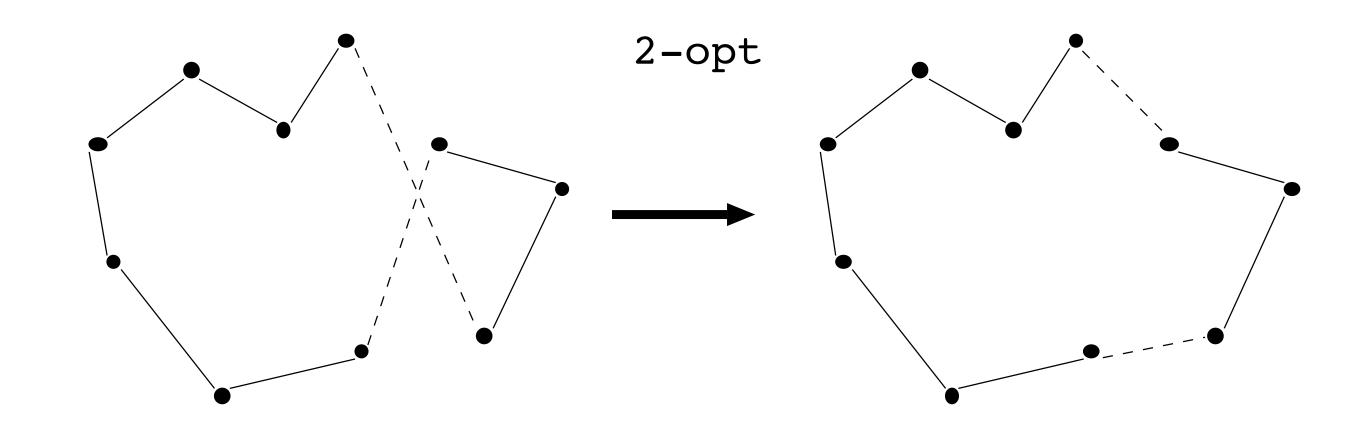


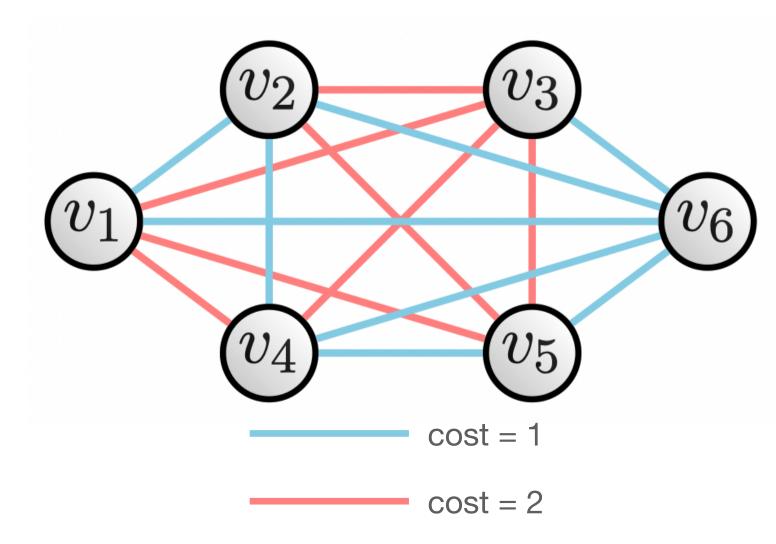
Nearest Neighbour heuristic for the TSP:

- always choose at the current city the closest unvisited city
 - choose an arbitrary initial city $\pi(1)$
 - at the *i*th step choose city $\pi(i+1)$ to be the city *j* that minimises $\{d(\pi(i),j)\}; j \neq \pi(k), 1 \leq k \leq i$

Iterative Improvement for the TSP

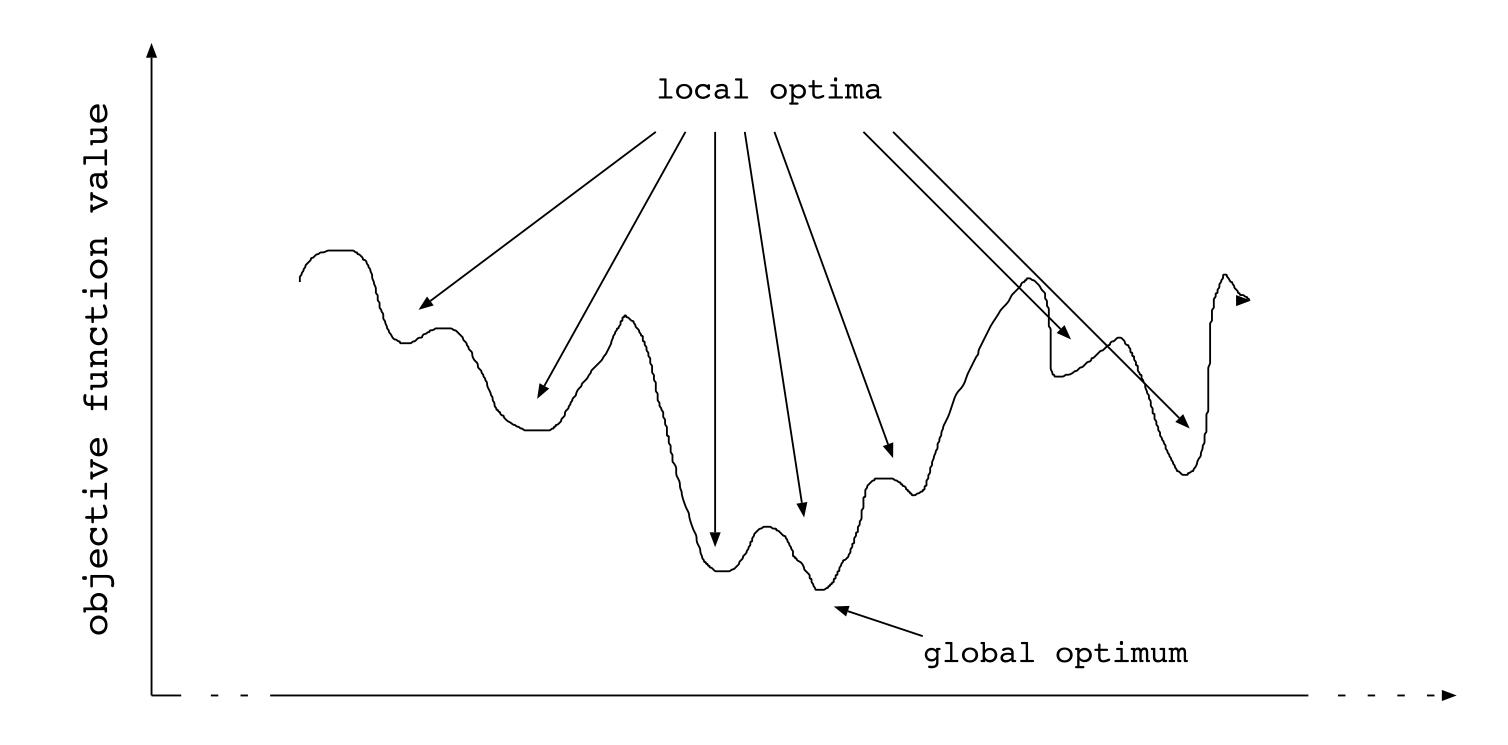
- initial solution is a complete tour
- k-opt neighbourhood: solutions which differ by at most k edges





Problems with local search?

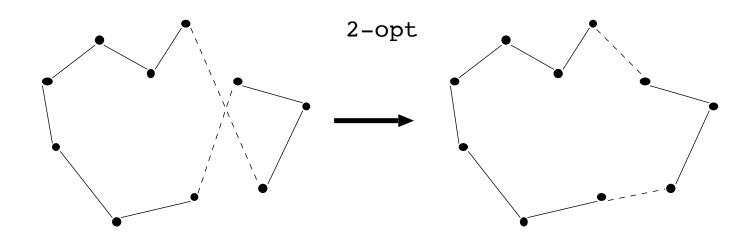
• neighbourhood size $\mathcal{O}(n^k)$



solution space

Iterative Improvement for the TSP

- initial solution is a complete tour
- k-opt neighbourhood: solutions which differ by at most k edges

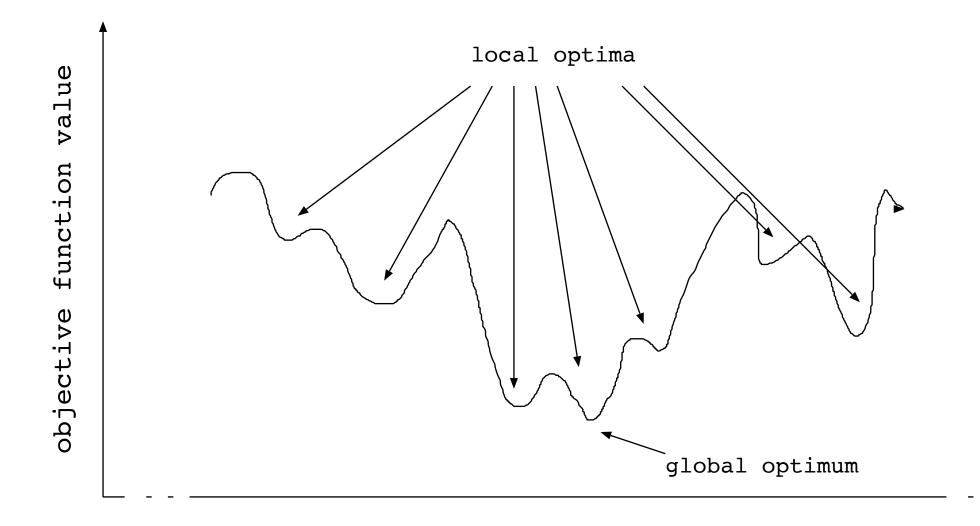


Hoos / Stützle

Stochastic Search Algorithms

Stochastic Local Search:

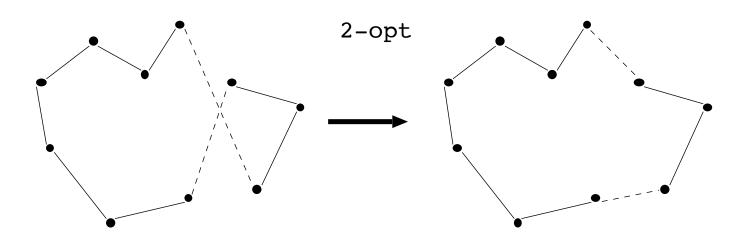
- randomise initialisation step
 - random initial solutions
 - randomised construction heuristics
- randomise search steps
 such that suboptimal/worsening steps are allowed
 → improved performance & robustness
- typically, degree of randomisation controlled by noise parameter
- allows to invest arbitrary computation times



solution space

Iterative Improvement for the TSP

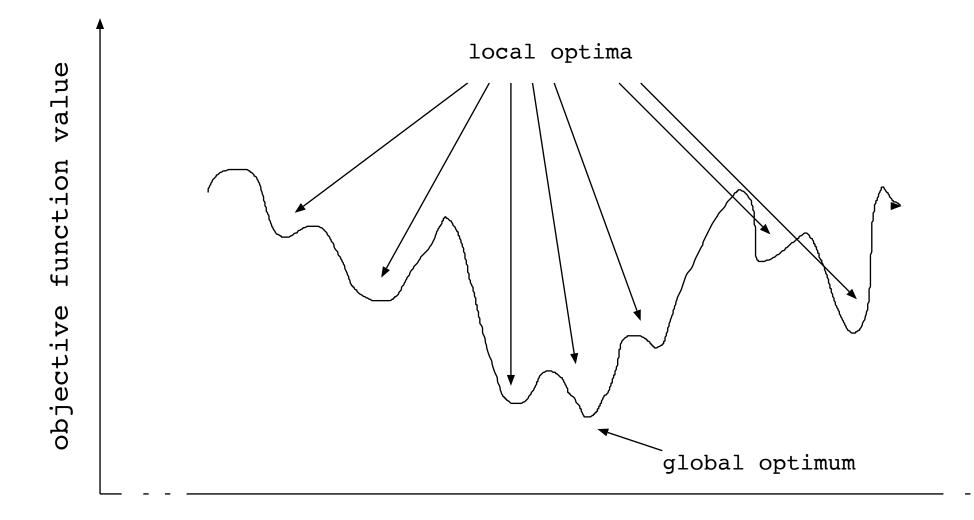
- initial solution is a complete tour
- k-opt neighbourhood: solutions which differ by at most k edges



Stochastic Local Search:

Problems with SLS?

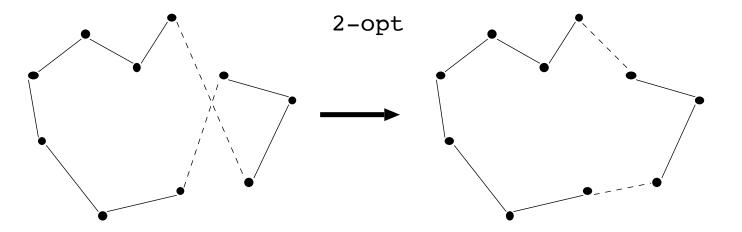
- randomise initialisation step
 - random initial solutions
 - randomised construction heuristics
- randomise search steps
 such that suboptimal/worsening steps are allowed
 → improved performance & robustness
- typically, degree of randomisation controlled by noise parameter
- allows to invest arbitrary computation times



solution space

Iterative Improvement for the TSP

- initial solution is a complete tour
- k-opt neighbourhood: solutions which differ by at most k edges



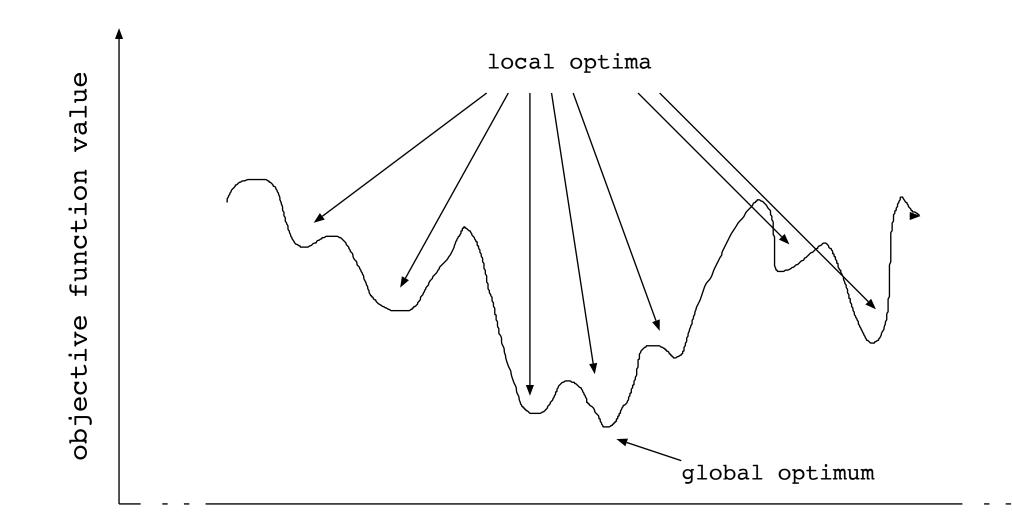
Randomised Iterative Improvement:

- initialise search at some point of search space
- search steps:
 - with probability p, move from current search position to a randomly selected neighbouring position
 - otherwise, move from current search position
 to neighbouring position with better objective function
 value

Stochastic Local Search:

- randomise initialisation step
 - random initial solutions
 - randomised construction heuristics
- randomise search steps
 such that suboptimal/worsening steps are allowed

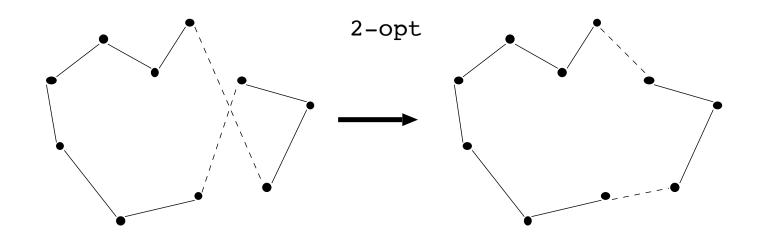
 → improved performance & robustness
- typically, degree of randomisation controlled by noise parameter
- allows to invest arbitrary computation times



solution space

Iterative Improvement for the TSP

- initial solution is a complete tour
- k-opt neighbourhood: solutions which differ by at most k edges



Tabu Search

Combinatorial search technique which heavily relies on the use of an explicit memory of the search process [Glover 1989, 1990]

- systematic use of memory to guide search process
- memory typically contains only specific attributes of previously seen solutions
- simple tabu search strategies exploit only short term memory
- more complex tabu search strategies exploit long term memory

Simple tabu search algorithm – exploiting short term memory

- in each step move to best neighbouring solution although it may be worse than current one
- to avoid cycles, tabu search tries to avoid revisiting previously seen solutions
- avoid storing complete solutions by basing the memory on solution attributes of recently seen solutions
- tabu solution attributes are often defined via local search moves
- ullet a tabu list stores attributes of the tl most recently visited solutions; parameter tl is called tabu list length or tabu tenure
- solutions which contain tabu attributes are forbidden

- problem: previously unseen solutions may be tabu

 → use of aspiration criteria to overwrite tabu status
- stopping criteria:
 - all neighbored solutions are tabu
 - maximum number of iterations
 - number of iterations without improvement
- appropriate choice of tabu tenure critical for performance

 ~ robust tabu search [Taillard, 1991], reactive tabu search
 [Battiti, Tecchiolli, 1994–1997]

Example: Tabu Search for SAT / MAX-SAT

[Hansen & Jaumard, 1990; Selman & Kautz, 1994]

Neighborhood: assignments which differ in exactly one variable instantiation

Tabu attributes: variables

Tabu criterion: flipping a variable is forbidden for a given number of iterations

Aspiration criterion: if flipping a tabu variable leads to a better solution, the variable's tabu status is overwritten

Analysing Stochastic Search Behaviour

Many SLS algorithms ...

- perform well in practice
- are incomplete, i.e., cannot be guaranteed to find (optimal) solutions
- are hard to analyse theoretically

→ empirical methods are used to analyse and characterise their behaviour.

The Scientific Method

make observations

formulate hypothesis/hypotheses (model)

While not satisfied (and deadline not exceeded) iterate:

- 1. design experiment to falsify model
- 2. conduct experiment
- 3. analyse experimental results
- 4. revise model based on results

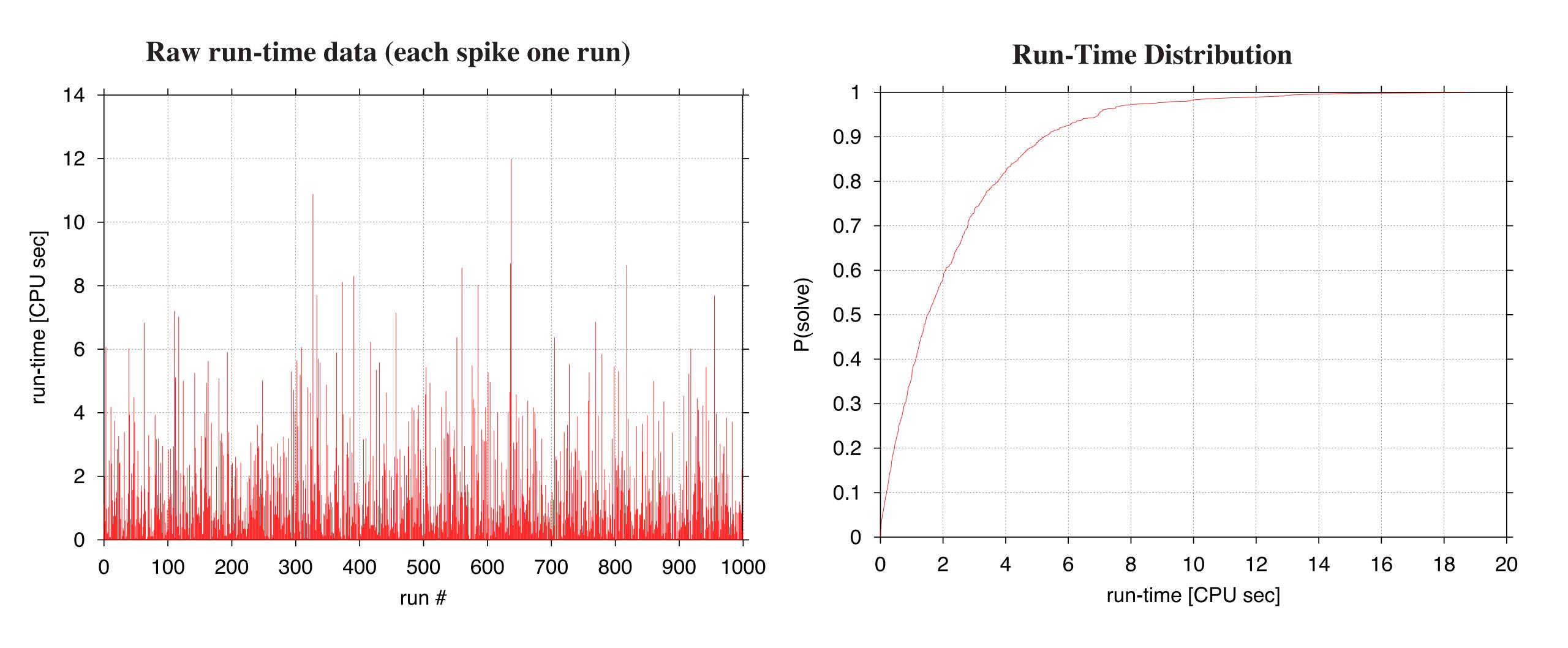
optimization vs decision (problem)

exact vs heuristic

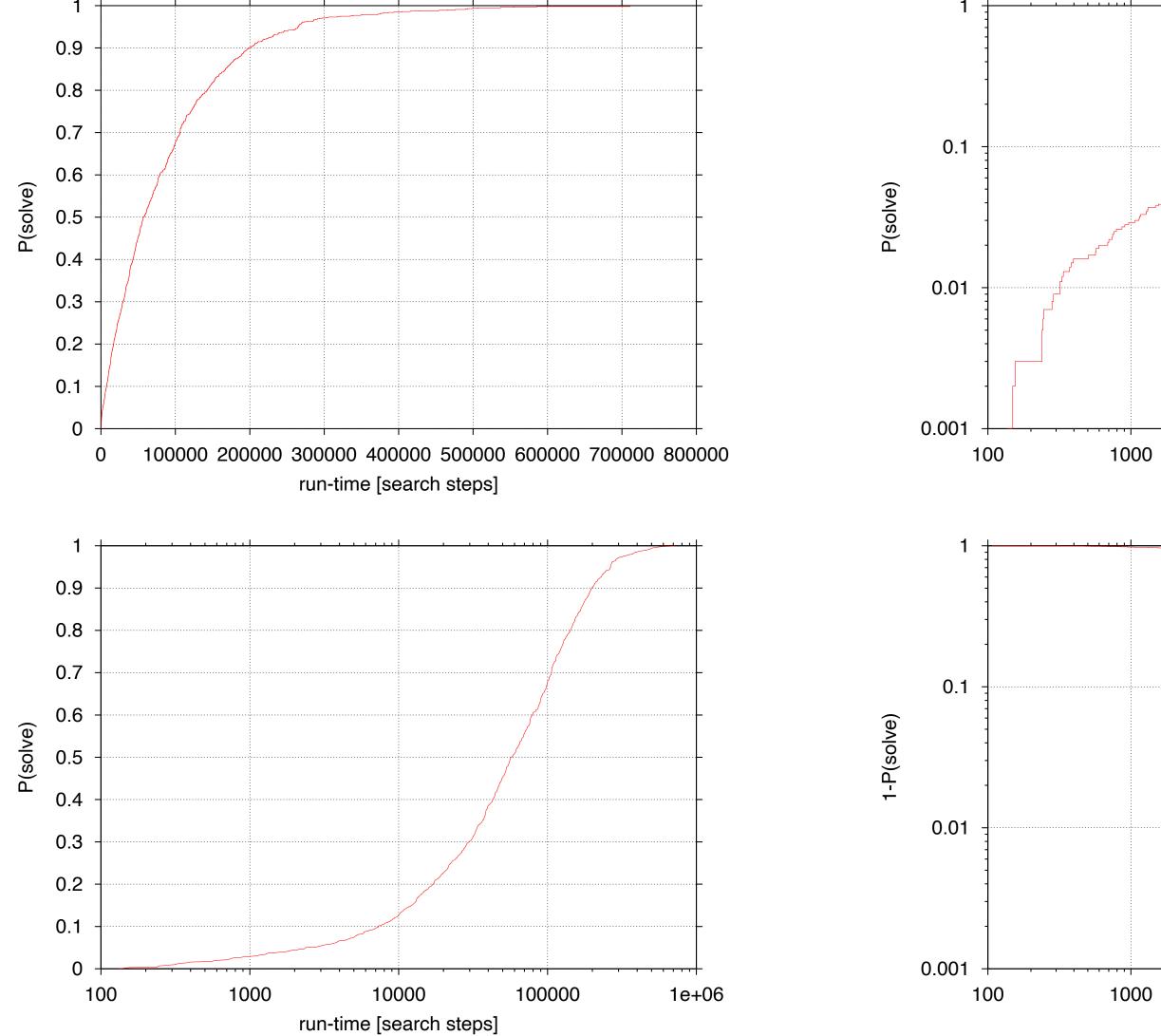
complete vs incomplete

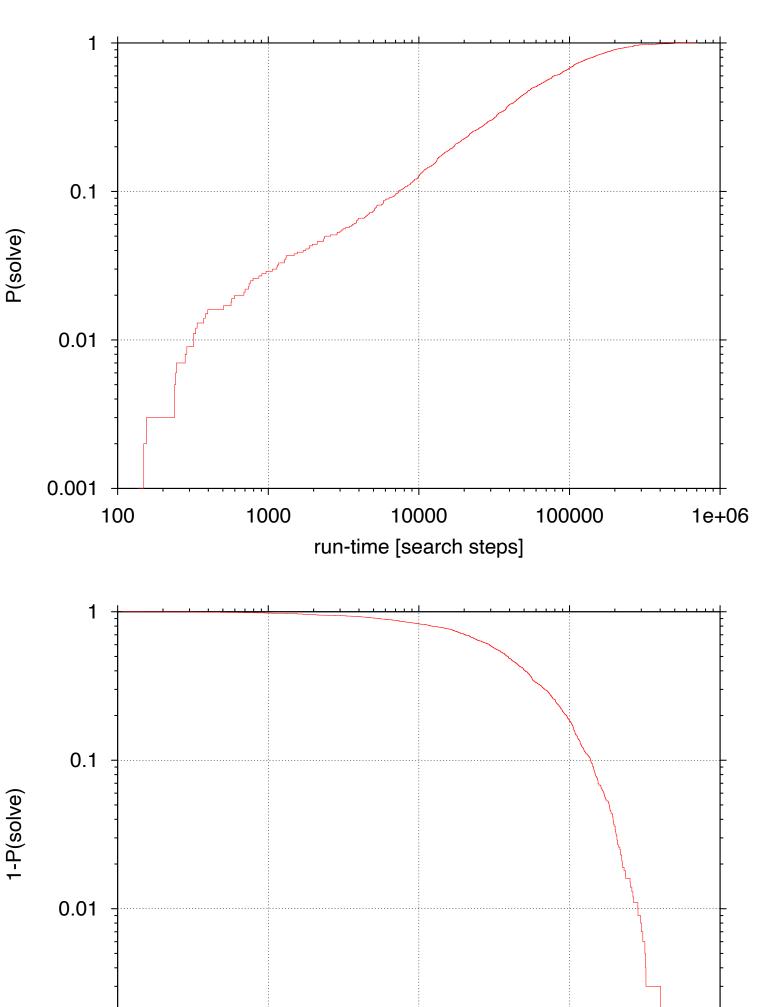
stochastic vs deterministic

sequential vs parallel



RTD Graphs





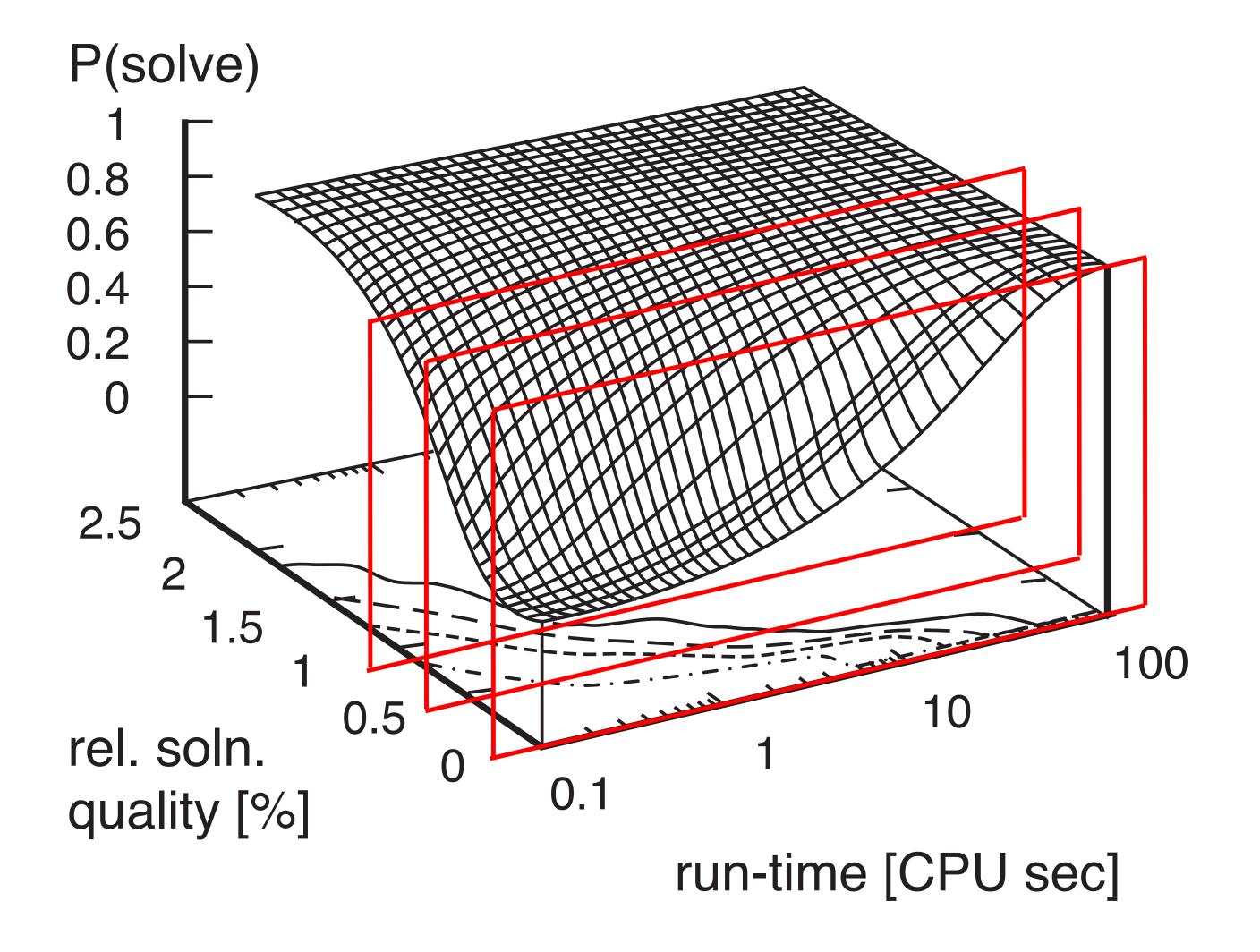
10000

run-time [search steps]

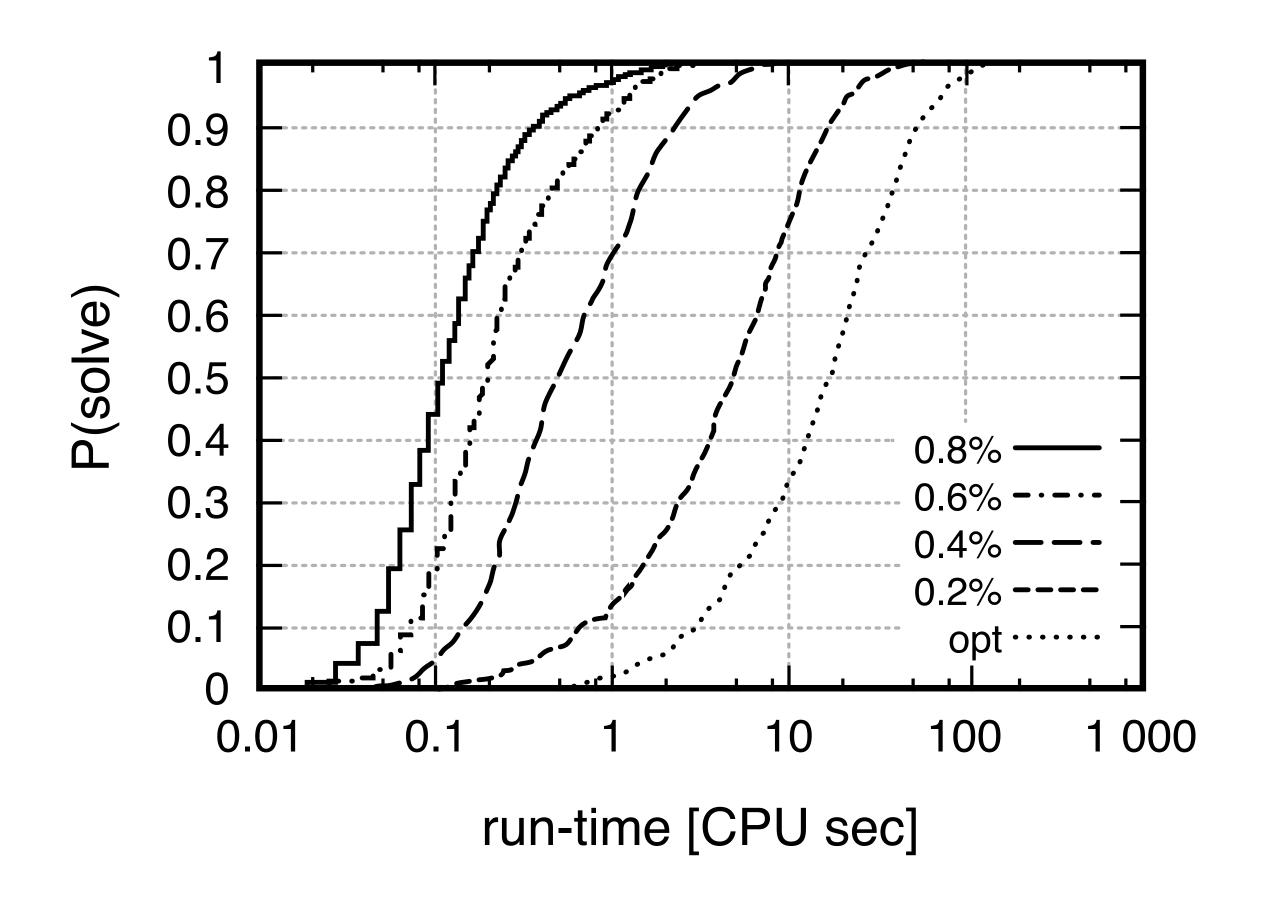
100000

1e+06

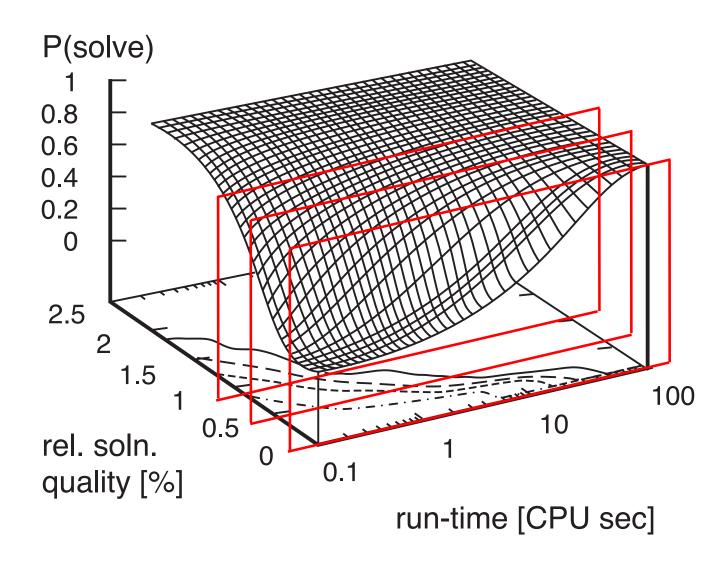
Typical run-time distribution for SLS algorithm applied to hard instance of combinatorial optimisation problem:



Qualified RTDs for various solution qualities:

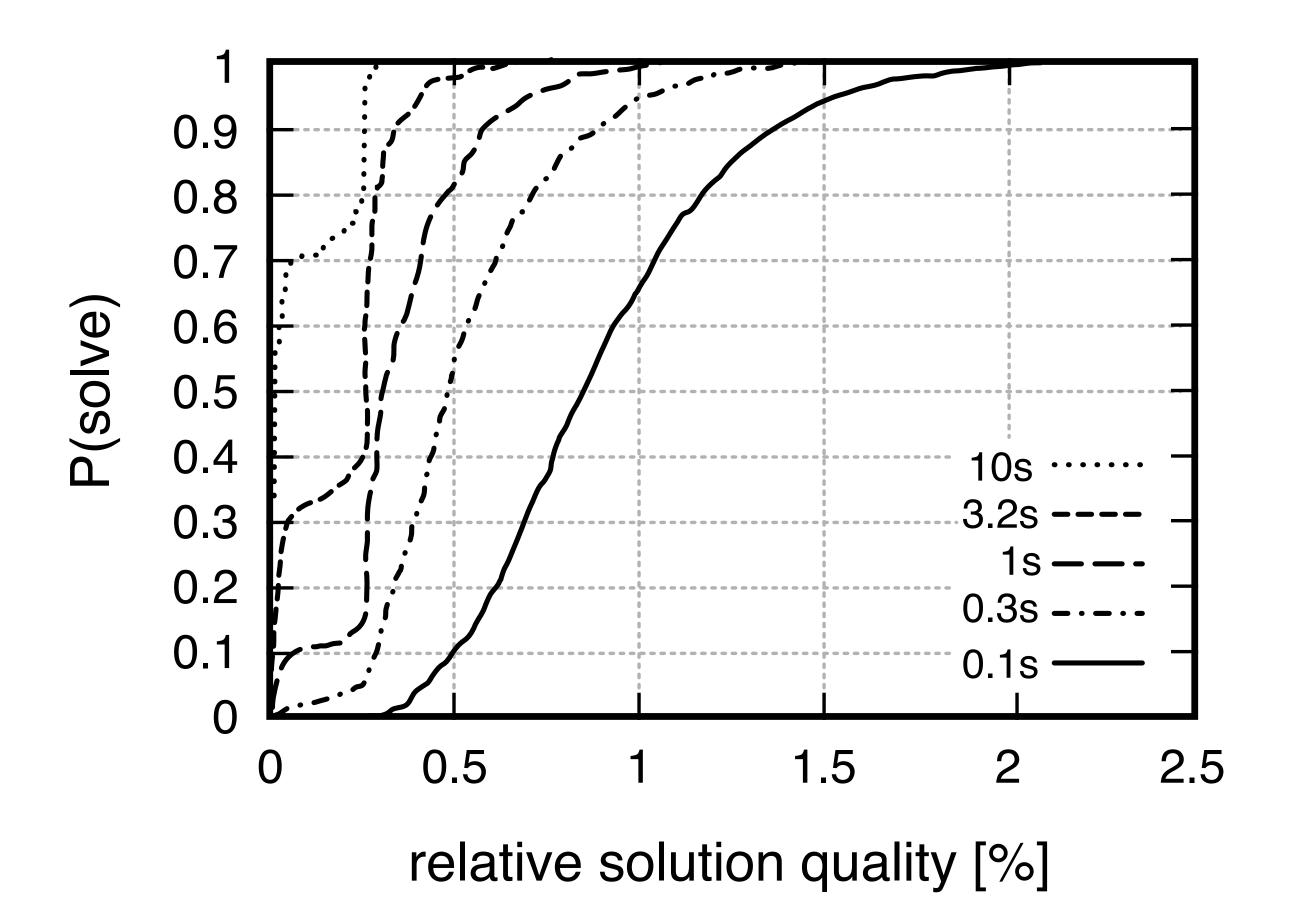


Typical run-time distribution for SLS algorithm applied to hard instance of combinatorial optimisation problem:

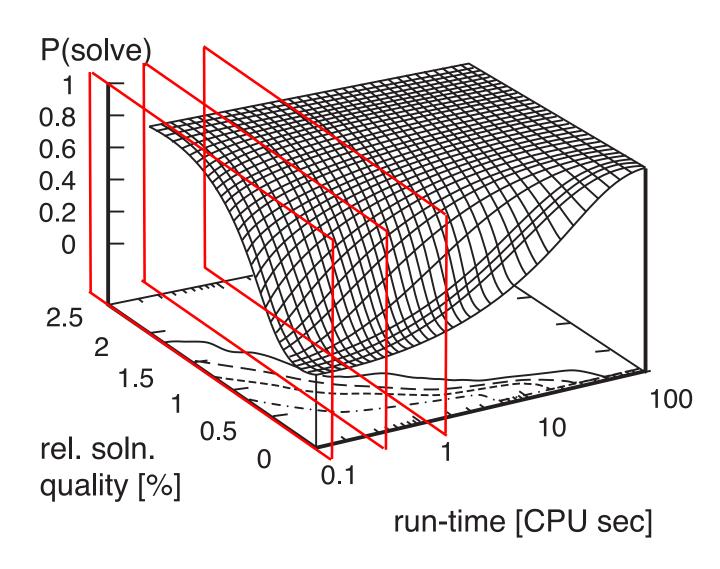


Stochastic Local Search: Foundations and Applications

Solution quality distributions for various run-times:



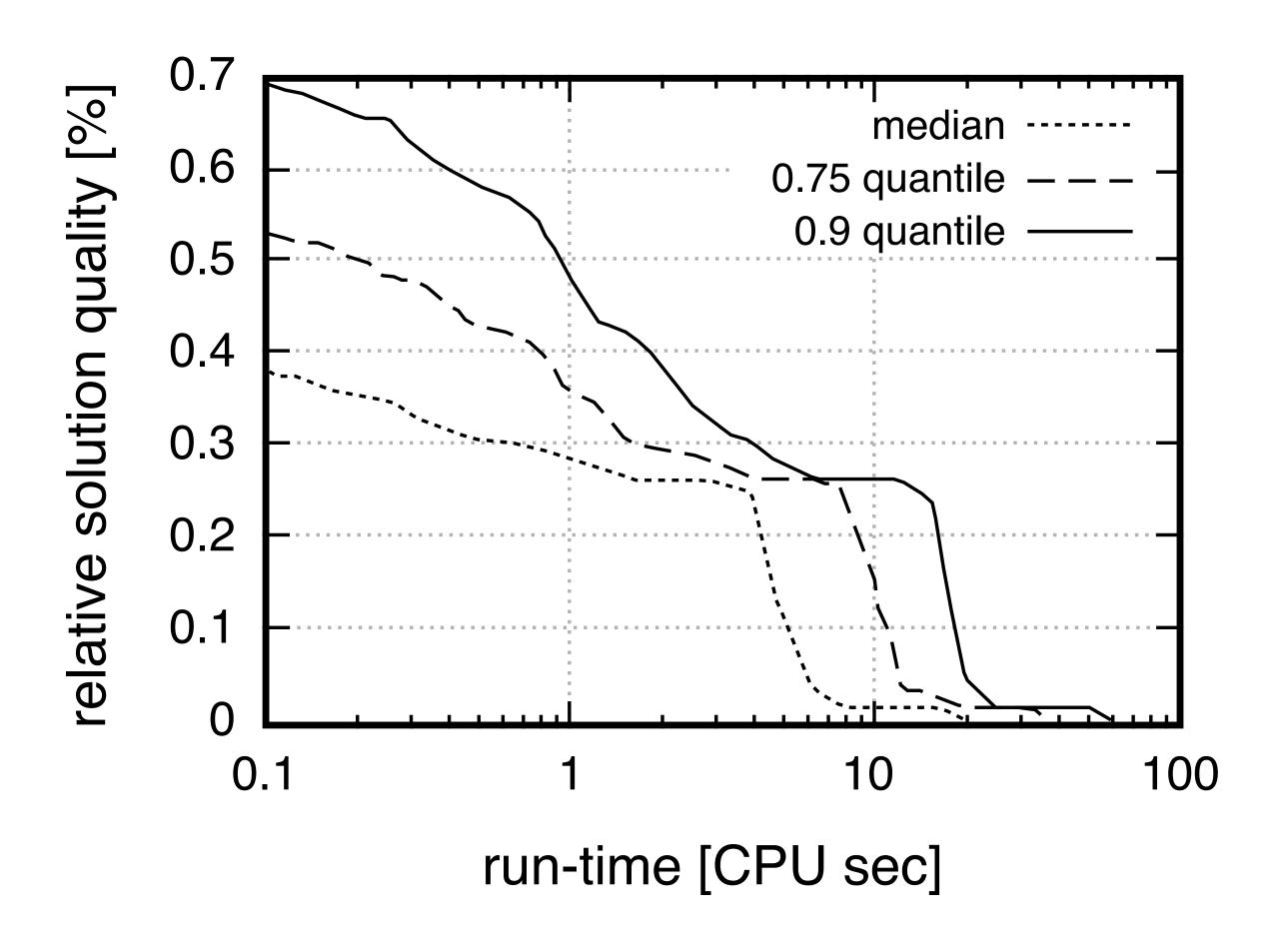
Typical solution quality distributions for SLS algorithm applied to hard instance of combinatorial optimisation problem:



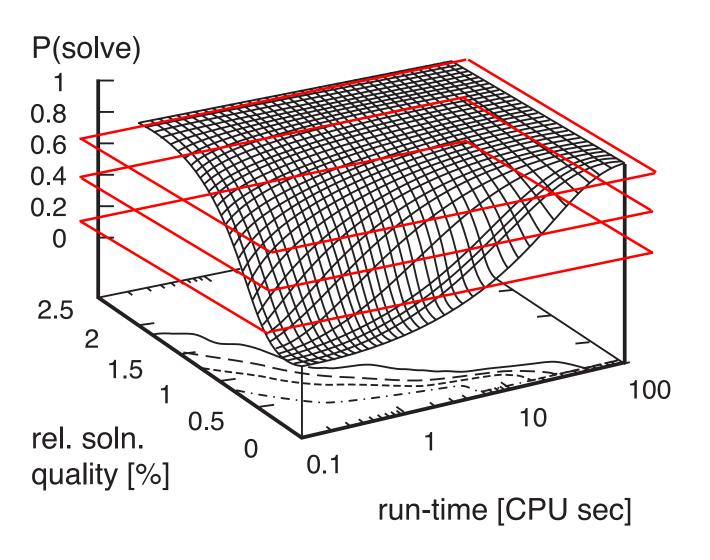
Stochastic Local Search: Foundations and Applications

SQT: Solution Quality over Time

Typical SQT curves for SLS optimisation algorithms applied to instance of hard combinatorial optimisation problem:



Typical SQT curves for SLS optimisation algorithms applied to instance of hard combinatorial optimisation problem:



Stochastic Local Search: Foundations and Applications

30

Mixed Integer (Linear) Program

$$\max c^{\mathsf{T}} x + h^{\mathsf{T}} y$$

$$Ax + Gy \le b$$

$$x \ge 0 \text{ and integer, } y \ge 0$$

$$A \in \mathbb{R}^{m \times n}, G \in \mathbb{R}^{m \times p}, b \in \mathbb{R}^{m \times 1}, c \in \mathbb{R}^{n \times 1}, h \in \mathbb{R}^{p \times 1}$$
$$x \in \mathbb{R}^{n \times 1}, y \in \mathbb{R}^{p \times 1}$$

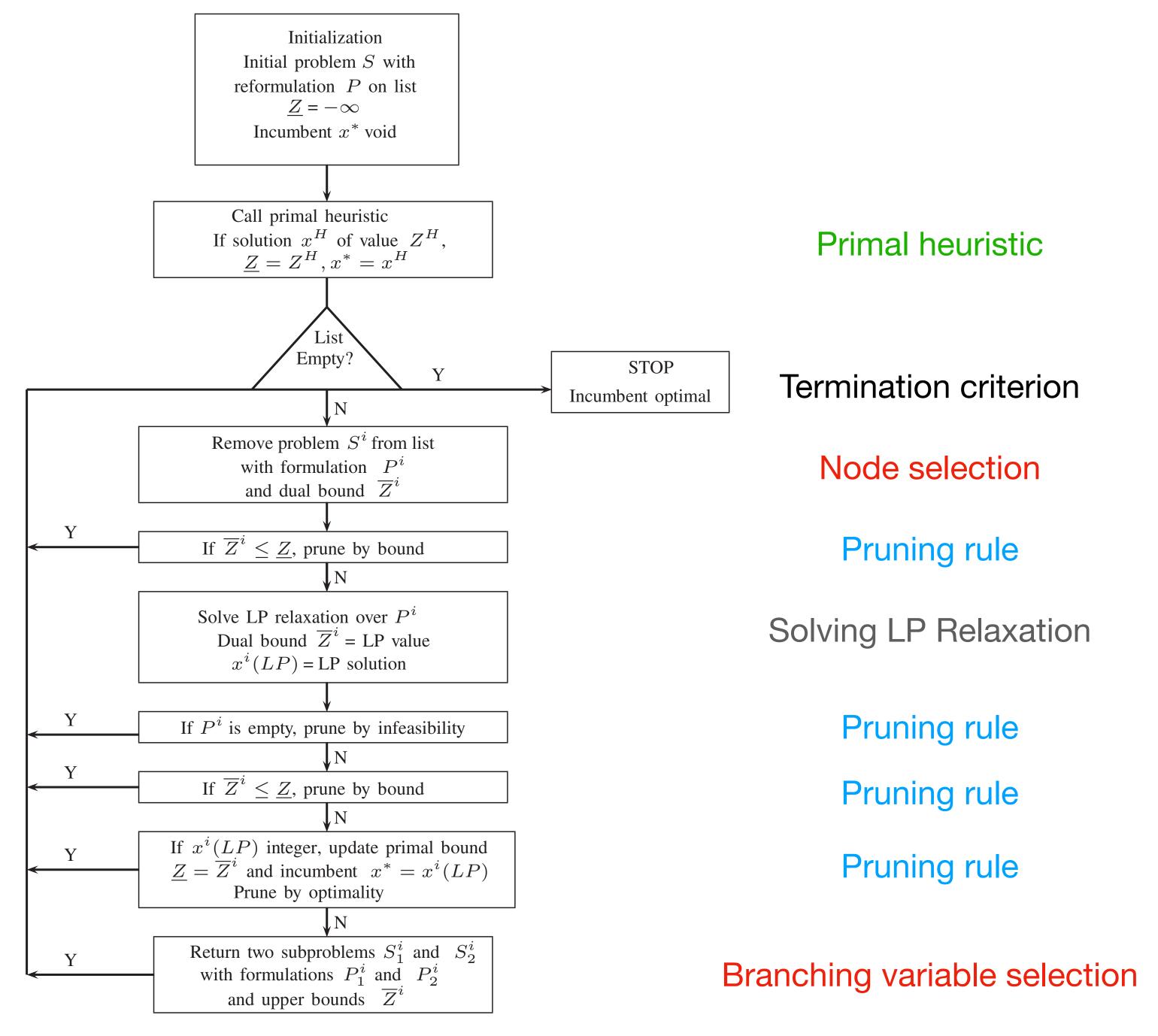


Figure 7.10 Branch-and-bound flow chart.

MIPLIB 2017 -- The Mixed Integer Programming Library

In response to the needs of researchers for access to real-world mixed integer programs, Robert E. Bixby, E.A. Boyd, and R.R. Indovina created in 1992 the MIPLIB, an electronically available library of both pure and mixed integer programs. Since its introduction, MIPLIB has become a standard test set used to compare the performance of mixed integer optimizers. Its availability has provided an important stimulus for researchers in this very active area. The library has now been released in its sixth edition as a collaborative effort between Arizona State University, COIN-OR, CPLEX, FICO, Gurobi, MathWorks, MIPCL, MOSEK, NUOPT, SAS, and Zuse Institute Berlin. Like the previous MIPLIB 2010, two main sets have been compiled from the submissions. The **Benchmark Set** contains 240 instances that are solvable by (the union of) today's codes. For practical reasons, the benchmark instances were selected subject to various constraints regarding solvability and numerical stability. The much larger Collection Set represents a diverse selection regardless of the above, benchmark-relevant criteria. Download the instance sets as well as supplementary data, run scripts and the solution checker from our Download page.

https://pubsonline.informs.org/doi/pdf/10.1287/educ.2013.0112

© 2013 INFORMS | ISBN 978-0-9843378-4-2 http://dx.doi.org/10.1287/educ.2013.0112

Performance Variability in Mixed-Integer Programming

$Andrea\ Lodi$

Department of Electrial, Electronic and Information Engineering, University of Bologna, Bologna, Italy, andrea.lodi@unibo.it

Andrea Tramontani

CPLEX Optimization, IBM, Bologna, Italy, andrea.tramontani@it.ibm.com

Abstract

The performance of mixed-integer programming solvers is subject to some unexpected variability that appears, for example, when changing from one computing platform to another, when permuting rows and/or columns of a model, when adding seemingly neutral changes to the solution process, etc. This phenomenon has been observed for decades, but only recently has it started to be methodologically analyzed with the two possible aims of either reducing or exploiting it, ideally both. In this tutorial we discuss the roots of performance variability, we provide useful tips to recognize it, and we point out some severe misinterpretations that might be generated by not performing/analyzing benchmark results carefully. Finally, we report on the most recent attempts to gain from variability.

Keywords mixed-integer programming; computation; branch and bound; benchmarking; erraticism; floating-point precision

Table 1. Impact of disabling zero-half cuts in CPLEX 12.5 (correct model grouping).

		Default	No zero-half cuts				Affected	
Class	$\# \mathrm{models}$	#tilim	$\# ext{tilim}$	$\# { m wins}$	#losses	Time	$\# \mathrm{models}$	Time
All	3,136	88	106	395	370	1.03	1,406	1.07
[0, 10k]	3,065	17	35	395	370	1.03	1,406	1.07
[1, 10k]	1,875	17	35	376	359	1.05	1,096	1.09
[10, 10k]	1,103	17	35	272	274	1.08	715	1.13
[100, 10k]	598	17	35	168	184	1.13	422	1.19
[1k, 10k]	243	17	35	69	85	1.23	188	1.31

Table 2. Impact of disabling zero-half cuts in CPLEX 12.5 (biased model grouping).

		Default	No zero-half cuts				Affected	
Class	$\# \mathrm{models}$	#tilim	$\# ext{tilim}$	$\# { m wins}$	#losses	Time	# models	Time
All	3,136	88	106	395	370	1.03	1,406	1.07
[0, 10k]	3,065	17	35	395	370	1.03	1,406	1.07
[1, 10k]	1,846	17	34	376	333	1.03	1,068	1.06
[10, 10k]	1,072	17	34	272	243	1.03	684	1.05
[100, 10k]	549	17	33	168	135	0.97	373	0.95
[1k, 10k]	207	17	25	69	50	0.82	153	0.76

Table 3. Comparison of CPLEX 12.5 using two different random seeds (correct model grouping).

		Seed 1	Seed 2				Affected	
Class	#models	$\# ext{tilim}$	#tilim	#wins	#losses	Time	#models	Time
All	3,121	87	105	581	588	1.00	$2,\!264$	1.01
[0, 10k]	3,051	17	35	581	588	1.00	2,264	1.01
[1, 10k]	1,864	17	35	558	558	1.01	1,693	1.01
[10, 10k]	1,110	17	35	398	396	1.01	1,056	1.01
[100, 10k]	596	17	35	238	237	1.02	585	1.02
[1k, 10k]	236	17	35	101	100	1.08	235	1.08

Learning to Branch in Mixed Integer Programming, Khalil et al., AAAI-16, https://ekhalil.com/files/papers/KhaLebSonNemDil16.pdf

	CPLEX-D	SB	PC	SB+PC	SB+ML
CPLEX-D		1.39 (389)	0.64 (449)	0.84 (452)	0.97 (463)
SB	0.72 (389)		0.47 (389)	0.61 (388)	0.76 (389)
PC	1.56 (449)	2.11 (389)		1.34 (445)	1.59 (450)
SB+PC	1.20 (452)	1.63 (388)	0.75 (445)		1.22 (454)
SB+ML	1.03 (463)	1.32 (389)	0.63 (450)	0.82 (454)	

Table 3: Ratios for the shifted geometric means (shift 10) over nodes on instances solved by both strategies. The first value in a cell in row \mathcal{A} and column \mathcal{B} is the ratio of the average number of nodes used by \mathcal{A} to that of \mathcal{B} . The second value is the number of instances solved by both \mathcal{A} and \mathcal{B} .

Learning to Branch in Mixed Integer Programming, Khalil et al., AAAI-16, https://ekhalil.com/files/papers/KhaLebSonNemDil16.pdf

	CPLEX-D	SB	PC	SB+PC
CPLEX-D				
SB	5/264/0/125/123			
PC	8/164/0/285/63	68/63/0/326/5		
SB+PC	8/227/0/225/60	72/66/7/315/6	15/320/0/125/12	
SB+ML	8/267/0/196/49	82/96/7/286/5	21/355/0/95/7	17/300/58/96/6

Table 4: Win-tie-loss matrix for the number of nodes. A quintuple in a cell in row \mathcal{A} and column \mathcal{B} has: the number of absolute wins, wins, ties, losses and absolute losses for \mathcal{A} against \mathcal{B} , w.r.t. the number of nodes.