Did | forget to hit

record? Please
remind me!

Empirical Algorithmics

MIE1666: Machine Learning for Mathematical Optimization

Largely based on the book Stochastic Local Search by Hoos and Stitzle and related slides by the authors
Some slides from Algorithm Design by Kleinberg and Tardos

& UNIVERSITY OF

¥ TORONTO

Elias B. Khalil — 27/09/21

F = (_11171 V 372)
/\ (_1332 V 2171)
(_1331 V 2o V _l£173)
AN (ZEl V $2)
A (_IZE4 V SEB)
A (_1335 V 333)

C = {7, L} the set of truth values (or propositional constants) true and
false, and O := {—, A, V} the set of propositional operators negation (‘not’),
conjunction (‘and’) and disjunction (‘or’).

E}{EMPLE 1.1 A SimplE SAT InEtEnEE See nice application in Product Configuration: https://

www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf

Let us consider the following propositional formula in CNF:

F = (_15171 V 3}'2)

A (_lil?g V 11'1)

A (—1331 V o V —liﬂg)

AN (ZEl V .’132)

A (_IZE4 V SE3)

A (_1335 V 2173)
For this formula, we obtain the variable set Var(F') = {x1, T2, T3,Z4,T5};
consequently, there are 2° = 32 different variable assignments. Exactly one
of these, 11 =2y =T,23=x4 =25 =1, is a model, rendering F
satisfiable.

C = {7, L} the set of truth values (or propositional constants) true and
false, and O := {—, A, V} the set of propositional operators negation (‘not’),
conjunction (‘and’) and disjunction (‘or’).

https://www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf
https://www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf
https://www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf

F = (_11171 V 2172)
/\ (_1332 \/iL'l)

Example of a (greedy) construction heuristic for SAT
e start with an empty variable assignment

e 1n each step select an unassigned variable

AN
and set 1t to a truth value A
A\

— 1f d unsatisfied clause with only one unassigned variable,

assign this variable to satisty this clause

— otherwise choose variable and truth value such that

maximal number of clauses become satisfied

Hoos / Stiitzle Stochastic Search Algorithms 38

(' = {T,L} the set of truth values (or propositional constants) true and
false, and O := {~, A, V} the set of propositional operators negation (‘not’),
conjunction (‘and’) and disjunction (‘or’).

4

Graph Optimization

D=0 OO
D
))

Travelling Salesperson Problem (TSP)

Europe

T

Maronia

Figure 1.1 A graphic representation of the geographic TSP instance ‘ulyssesl6’ and
its optimal solution (dashed line); the solid line and arrows indicate the sequence
in which Homer’s Ulysses supposedly visited the 16 locations. See Example 1.2 for
details.

Nearest Neighbour heuristic for the TSP:

e always choose at the current city the closest unvisited city @
— choose an arbitrary initial city 7 (1)

— at the ith step choose city (7 + 1) to be the city j that
minimises {d(7(z),7)}; 7 #w(k),1 <k <1

e running time O(n?)

e worst case performance
NN (x)/OPT(x) <0.5(|loggn| + 1)

e oOther construction heuristics for TSP are available

Hoos / Stiitzle Stochastic Search Algorithms
7

36

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Polynomial running time

Desirable sca

should slow ©

ing property. When the input size doubles, the algorithm
own by at most some multiplicative constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exist constants ¢ > 0 and d > 0 such that,

for every input of size n, the running time of the algorithm

is bounded above by c nd primitive computational steps. <«—

von Neumann
(1953)

corresponds
to C = 2¢

Cobham Edmonds Rabin
(1964) (1965) (1966)

Nash
(1955)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Worst-case analysis

Worst case. Running time guarantee for any input of size n.
« Generally captures efficiency in practice.
« Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice
because the worst-case instances don't arise.

L}

Optimal I

solution
grep
THEREFORE, 1 Am!

simplex algorithm Linux grep k-means algorithm

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Big O notation

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Upper bounds. f(n) is O(g(n)) if there exist constants ¢>0and n, = 0

such that0=< f(n) < ¢c-g(n) forall n =

Ex. f(n)=32n*+17n+ 1.
* f(n) IS 0(712)- <€«—— choose c=50,n0=1
* f(n) is neither O(n) nor O(n log n).

ng.
c-gn)

J(n)

no n

Typical usage. Insertion sort makes O(n?) compares to sort n elements.

12

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

@

Analysis of algorithms: quiz 1 i

Let f(n) = 3n? + 17 n logz n + 1000. Which of the following are true?

A. f(n)is 0.

B. f(n)is 0.

C. Both A and B.

D. Neither A nor B.

13

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Polynomial time

Polynomial time. Running time is O(#*) for some constant k£ > 0.

Independent set of size k. Given a graph, find kK nodes such that no two
are joined by an edge. AN

k is a constant

O(n*) algorithm. Enumerate all subsets of k£ nodes.

FOREACH subset S of k nodes:

Check whether S 1s an independent set.

IF (S 1s an independent set)

RETURN §.

independent set of size 3

* Check whether S is an independent set of size k takes O(k?) time.
* Number of k-element subsets = (n) _nn=Dm-2)x---x(n-k+1) _ n*

* O(kznk/k'):O(nk) k k(k—l)(k—Q)x...Xl — F
N\

poly-time for k=17, but not practical 46
12

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Exponential time

Exponential time. Running time is 0(2”’") for some constant k > 0.
Independent set. Given a graph, find independent set of max cardinality.

O(n?2") algorithm. Enumerate all subsets of n elements.

§* «— .

FOREACH subset S of n nodes:

Check whether S 1s an independent set.
IF (S is an independent set and | S| > | S*)
§* < 8§.

independent set of max cardinality

RETURN S*.

47
13

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Exponential time

Exponential time. Running time is 0(2”") for some constant k > 0.
Euclidean TSP. Given n points in the plane, find a tour of minimum length.
O(n x n!) algorithm. Enumerate all permutations of length n.

Tt «— .

FOREACH permutation 7t of n points:

Compute length of tour corresponding to It.

IF (length(7t) < length(t*))

TT* < . \

" for simplicity, we’ll assume Euclidean
RETURN 7t*. distances are rounded to nearest integer
(to avoid issues with infinite precision)

48
14

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Example of a (greedy) construction heuristic for SAT F . — (_ISU 1 vV 372)

e start with an empty variable assignment A (_'fL'), VT 1)
e in each step select an unassigned variable A (—133 1 \ I % V X 3)
and set 1t to a truth value
B | - A(Z1V Z2)
— 1f d unsatisfied clause with only one unassigned variable,
assign this variable to satisfy this clause A (_'3:4 v ZEB)
— otherwise choose variable and truth value such that /\ (_133 5 VI 3)

maximal number of clauses become satisfied

Iterative Improvement for SAT
e initialisation: randomly chosen, complete truth assignment

e necighbourhood: variable assignments are neighbours ift they

differ in truth value of one variable

e objective function: number of clauses unsatisfied under given

assignment

15

Nearest Neighbour heuristic for the TSP:

e always choose at the current city the closest unvisited city
— choose an arbitrary initial city 7 (1)

— at the ¢th step choose city (7 + 1) to be the city j that
minimises {d(7(¢),7)}; 7 # m(k),1 <k <1

Iterative Improvement for the TSP

e 1nitial solution 1s a complete tour

e k-opt neighbourhood: solutions which differ by at most £

edges
® 2-opt .
/ .\‘/ \\\ / .\./
K \\\//O\‘ K .\.
AV /
\ 0//// \\\. \ o - ®
c/ 0/ N

e neighbourhood size O(n*) 16

Nearest Neighbour heuristic for the TSP:

e always choose at the current city the closest unvisited city
— choose an arbitrary initial city 7 (1)

— at the ¢th step choose city (7 + 1) to be the city j that
minimises {d(7(¢),7)}; 7 # m(k),1 <k <1

Iterative Improvement for the TSP

e 1nitial solution 1s a complete tour

e k-opt neighbourhood: solutions which differ by at most £

edges
® 2-opt .
/ .\‘/ \\\ / .\./
K \\\//C\‘ K .\‘
AV /
\ O//// \\\. \ o - ®
0/ o/ N

e neighbourhood size O(n*) 16

Problems with local search?

Hoos / Stiitzle

objective function value

local optima

\

global optimum

solution space

Stochastic Search Algorithms

17

Iterative Improvement for the TSP
e 1nitial solution 1s a complete tour

e k-opt neighbourhood: solutions which differ by at most &
edges

2-opt o .
///“\\‘// .
@ [J

\.

P avas

— |

\ S
\ ‘/,’ \‘/ \ . - ‘/

Stochastic Local Search:

e randomise 1nitialisation step

— random 1nitial solutions

— randomised construction heuristics
e randomise search steps

such that suboptimal/worsening steps are allowed

~» 1mproved performance & robustness

e typically, degree of randomisation controlled by noise

parameter

e allows to 1nvest arbitrary computation times

Hoos / Stiitzle Stochastic Search Algorithms
18

objective function value

local optima

7

\

global optimum

solution space

Iterative Improvement for the TSP
e 1nitial solution 1s a complete tour

e k-opt neighbourhood: solutions which differ by at most &
edges

2-opt

. i . . P

~ -
- <
-

AT 7
NS / N /

I

Stochastic Local Search: Problems with SLS?

e randomise 1nitialisation step

— random 1nitial solutions

— randomised construction heuristics

e randomise search steps
such that suboptimal/worsening steps are allowed

~» 1mproved performance & robustness

e typically, degree of randomisation controlled by noise

parameter

e allows to 1nvest arbitrary computation times

Hoos / Stiitzle Stochastic Search Algorithms
18

objective function value

local optima

7

\

global optimum

solution space

Iterative Improvement for the TSP
e 1nitial solution 1s a complete tour

e k-opt neighbourhood: solutions which differ by at most &

edges
* 2-opt .
AN AN
K \\\//Q\‘ @ []

\.
| / /
\ ‘// \\o \ . _--®
- -

Randomised Iterative Improvement:

local optima

e 1nitialise search at some point of search space

e scarch steps:

— with probability p, move from current search position

to a randomly selected neighbouring position

— otherwise, move from current search position

objective function value

to neighbouring position with better objective function e " giobal optimn
value
solution space
Stochastic Local Search:
e randomise initialisation step
— random initial solutions
— randomised construction heuristics Iterative Improvement for the TSP
e randomise search steps e initial solution 1s a complete tour
such that suboptimal/worsening steps are allowed e k-opt neighbourhood: solutions which differ by at most &
~» improved performance & robustness edges
e typically, degree of randomisation controlled by noise s / ‘ 4-opt s /

parameter T

s/ /
e allows to invest arbitrary computation times \ Ny \ e
19 0/ o/ ;

Tabu Search

Combinatorial search technique which heavily relies on the use of

an explicit memory of the search process [Glover 1989, 1990]
e systematic use of memory to guide search process

e memory typically contains only specific attributes of

previously seen solutions
e simple tabu search strategies exploit only short term memory

e more complex tabu search strategies exploit long term memory

Hoos / Stiitzle Stochastic Search Algorithms
20

Simple tabu search algorithm — exploiting short term memory

Hoos / Stiitzle

in each step move to best neighbouring solution although it

may be worse than current one

to avoid cycles, tabu search tries to avoid revisiting previously

seen solutions

avold storing complete solutions by basing the memory on

solution attributes of recently seen solutions
tabu solution attributes are often defined via local search moves

a tabu list stores attributes of the ¢/ most recently visited

solutions; parameter ¢/ i1s called tabu list length or tabu tenure

solutions which contain tabu attributes are forbidden

Stochastic Search Algorithms
21

e problem: previously unseen solutions may be tabu
~» use of aspiration criteria to overwrite tabu status
e stopping criteria:
— all neighbored solutions are tabu
— maximum number of 1terations
— number of iterations without improvement
e appropriate choice of tabu tenure critical for performance

~» robust tabu search [Taillard, 1991], reactive tabu search
[Battit1, Tecchiolli, 1994—1997]

Hoos / Stiitzle Stochastic Search Algorithms

22

Example: Tabu Search for SAT / MAX-SAT
[Hansen & Jaumard, 1990; Selman & Kautz, 1994]

Neighborhood: assignments which differ in exactly one variable

Instantiation
Tabu attributes: variables

Tabu criterion: flipping a variable 1s forbidden for a given number

of 1terations

Aspiration criterion: 1f flipping a tabu variable leads to a better

solution, the variable’s tabu status 1S overwritten

23

Analysing Stochastic Search Behaviour

Many SLS algorithms ...
e perform well 1n practice

e arc incomplete, 1.e., cannot be guaranteed to find

(optimal) solutions

e are hard to analyse theoretically

~» empirical methods are used to analyse and characterise

their behaviour.

24

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/intro.pdf

The Scientific Method

make observations
formulate hypothesis/hypotheses (model)

While not satisfied (and deadline not exceeded) iterate:
1. design experiment to falsify model

2. conduct experiment

3. analyse experimental results

4. revise model based on results

25

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/intro.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/intro.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/intro.pdf

optimization vs decision (problem)
exact vs heuristic complete vs incomplete
stochastic vs deterministic

sequential vs parallel

26

run-time [CPU sec]

14

—l
N

—i
o

00

Raw run-time data (each spike one run)

0 100 200 300

400 500
run #

600

/00 800 900 1000

P(solve)

27

Run-Time Distribution

6 8 10 12 14 16 18 20
run-time [CPU sec]

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf

P(solve)

P(solve)

RTD Graphs

0 100000 200000 300000 400000 500000 600000 700000 800000

run-time [search steps]

100 1000 10000 100000 1e+06

run-time [search steps]

P(solve)

1-P(solve)

28

1
0.1 4 -
0.01] -

0.001 —————rry ———— —————rr ————

100 1000 10000 100000 1e+06
run-time [search steps]
1
01] o
0.01 -
0.001 —
100 1000 10000 100000 1e+06

run-time [search steps]

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

Typical run-time distribution for SLS algorithm applied to

hard instance of combinatorial optimisation problem:

Al
AN
\ X

>
m 0 g
= T o2
O N n =
Le-votano © = >
0 oooo AN = O

run-time [CPU sec]

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

Qualified RTDs for various solution qualities:

Typical run-time distribution for SLS algorithm applied to
hard instance of combinatorial optimisation problem:

P(solve)

rel. soln.
quality [%]

run-time [CPU sec]

10 100 1 000

Stochastic Local Search: Foundations and Applications 22

run-time [CPU sec]

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/

df

labs/beta/Courses/CPSC536H-12/Slides/m5-all.

Solution quality distributions for various run-times:

ki

] ,.,,,,‘3?,

A
A

run-time [CPU sec]

Typical solution quality distributions for SLS algorithm applied

to hard instance of combinatorial optimisation problem:

25

Stochastic Local Search: Foundations and Applications

2.5

relative solution quality [9%]

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/

SQT: SO I Uti O n Q U a I ity OVG r Ti m e labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

Typical SQT curves for SLS optimisation algorithms applied to
instance of hard combinatorial optimisation problem:

0.7 Typical SQT curves for SLS optimisation algorithms applied to
0 ' _ instance of hard combinatorial optimisation problem:
o= median
= 0.9 quantile 1
S 0.5 A 08
O 04 <
(- 04 O.g
O
5 0.3 25
O
@ 0.2
g rel. soln.
= O 1 quallty (%]
C_U] run-time [CPU sec]
O
= O Stochastic Local Search: Foundations and Applications 30
0.1 1 10 100

run-time [CPU sec]

Stochastic Local Search: Foundations and Applications 31

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

Mixed Integer (Linear) Program

max c'x + h'y
Arx+ Gy < b
r > 0 and integer, y > 0

AeR™™ GeR™P beR™ " ce R" he RP

r e R ¢ e RPX!

Initialization
Initial problem S with
reformulation P on list
4 =—00
Incumbent =™ void

l

Call primal heuristic

If solution =¥ of value Z% ,
Z — ZH, :E* — CUH

List
Empty?

Primal heuristic

IN

STOP

Incumbent optimal

Termination criterion

Remove problem S* from list

with formulation P_i
and dual bound Z°

y !

= If Z' < Z, prune by bound

IN

Solve LP relaxatiqn over P*
Dua_l bound Z' = LP value
x" (L P) =LP solution

!

< If P*is empty, prune by infeasibility

y i

< If Z° < Z, prune by bound

IN

v If 2" (L P) integer, update primal bound
< Z = Z' and incumbent z* = 2" (LP)
Prune by optimality

IN

v Return two subproblems .S i and S;
< with formulations P; and P,

and upper bounds Z°

Figure 710 Branch-and-bound flow chart.

Node selection
Pruning rule
Solving LP Relaxation

Pruning rule

Pruning rule

Pruning rule

Branching variable selection

C O A NotSecure miplib2017.zib.de

MIPLIB 2017 About v Benchmark Collection Download Help ~

MIPLIB 2017 -- The Mixed Integer Programming Library

seuagopooiean

In response to the needs of researchers for access to real-world I Wasisare g
mixed integer programs, Robert E. Bixby, E.A. Boyd, and R.R. R kot ot

nteqratel

& core june Known 2 netv

1ension

Indovina created in 1992 the MIPLIB, an electronically available : "-“g{;F‘?,E?ifffﬁ“fﬁ%‘,} S Of‘ - q” ‘)‘[
library of both pure and mixed integer programs. Since its e . Vi’ fgj’{’;é?y”?#!?é‘@’; 3 m;‘gigfggeegtz’
iIntroduction, MIPLIB has become a standard test set used to *;zj : Sﬁ;c;r;nconstralnts %% smal *f g
compare the performance of mixed integer optimizers. Its 2 5D yCO|U$gUSI ng 4—‘%’8 B BBy
availability has provided an important stimulus for researchers in ‘“;]:SC“hoed ‘L‘Tl nq C ﬁeEg E% g constraint
this very active area. The library has now been released in its sixth i : < g — tnetwork 8 g I
edition as a collaborative effort between Arizona State University, f’,ﬁf':‘a'
COIN-OR, CPLEX, FICO, Gurobi, MathWorks, MIPCL, MOSEK, rarvestod 5 %p rO e I I l c 828
NUOPT, SAS, and Zuse Institute Berlin. Like the previous MIPLIB u'mp;;:::: R mg E_ .
2010, two main sets have been compiled from the submissions. S22 § Elcangmg (DU poolean c%;‘é 85
The Benchmark Set contains 240 instances that are solvable by (fq;;:gd%g .hboi?st O G>) = §
(the union of) today's codes. For practical reasons, the computational = & . S % i% —=problems
benchmark instances were selected subject to various constraints :;)roducl“]tlwz)::\ *g):% E 8|§m® é 55; ;é“
regarding solvability and numerical stability. The much larger I:“be: ;EQ S vertices :Eg 252;'
Collection Set represents a diverse selection regardless of the S 2 : * nyperedges £ §§ d 1’ :f‘).':].:»~ ,
above, benchmark-relevant criteria. Download the instance sets R programming S8 8 § £ oo
processing =g o 8

as well as supplementary data, run scripts and the solution
checker from our Download page.

35

https://pubsonline.informs.org/doi/pdf/10.1287/educ.2013.0112

TUTORIALS m imm

OPERATIONS RESEARCH

INFORMS 2013 © 2013 INFORMS | 1SBN 978-0-9843378-4-2
http://dx.doi.org/10.1287 /educ.2013.0112

Performance Variability in Mixed-Integer
Programming

Andrea Lod1

Department of Electrial, Electronic and Information Engineering, University of Bologna, Bologna,
Italy, andrea.lodiQunibo.it

Andrea Tramontani
CPLEX Optimization, IBM, Bologna, Italy, andrea.tramontaniQit.ibm.com

Abstract The performance of mixed-integer programming solvers is subject to some unexpected
variability that appears, for example, when changing from one computing platform to
another, when permuting rows and/or columns of a model, when adding seemingly
neutral changes to the solution process, etc. This phenomenon has been observed for
decades, but only recently has it started to be methodologically analyzed with the
two possible aims of either reducing or exploiting it, ideally both. In this tutorial
we discuss the roots of performance variability, we provide useful tips to recognize
it, and we point out some severe misinterpretations that might be generated by not
performing/analyzing benchmark results carefully. Finally, we report on the most
recent attempts to gain from variability.

Keywords mixed-integer programming; computation; branch and bound; benchmarking;
erraticism; floating-point precision

https://pubsonline.informs.org/doi/pdf/10.1287/educ.2013.0112

TABLE 1. Impact of disabling zero-half cuts in CPLEX 12.5 (correct model grouping).

No zero-half cuts Affected
Default
Class #models #tilim #tilim #wins #losses Time #models Time
All 3,136 88 106 395 370 1.03 1,406 1.07
0, 10K] 3,065 17 35 395 370 1.03 1,406 1.07
1, 10K] 1,875 17 35 376 359 1.05 1,096 1.09
10, 10K] 1,103 17 35 212 274 1.08 715 1.13
100, 10k] 598 1 4 35 168 184 1.13 422 1.19
1k, 10K] 243 17 35 69 85 1.23 188 1.31

TABLE 2. Impact of disabling zero-half cuts in CPLEX 12.5 (biased model grouping).

No zero-half cuts Affected
Default
Class #models #tilim #tilim #wins #losses Time #models Time
All 3,136 88 106 395 370 1.03 1,406 1.07
0, 10K] 3,065 17 35 395 370 1.03 1,406 1.07
1, 10K] 1,846 17 34 376 333 1.03 1,068 1.06
10, 10K] O 2 17 34 202 243 1.03 684 1.05
100, 10K] 549 17 33 168 135 0.97 373 0.95
1k, 10K] 207 17 25 69 50 0.82 153 0.76

37

TABLE 3. Comparison of CPLEX 12.5 using two different random seeds (correct model grouping).

Seed 1 Seed 2 Affected
Class #models #tilim #tilim F#WIns #losses Time #models Time
All o2k 87 105 581 588 1.00 2,264 1.01
0, 10k 3,001 17 39 581 588 1.00 2,264 1.01
1,10k 1,864 17 35 508 508 1.01 1,693 1.01
10, 10K] 1,110 17 35 398 396 1.01 1,056 1.01
100, 10k] 596 17 39 238 237 1.02 585 1.02
1k, 10Kk] 236 17 39 101 100 1.08 235 1.08

38

Learning to Branch in Mixed Integer Programming, Khalil et al., AAAI-16,
https://ekhalil.com/files/papers/Khal. ebSonNemDil16.pdf

CPLEX-D SB PC SB+PC SB+ML
CPLEX-D 1.39 (389) 0.64 (449) 0.84 (452) 0.97 (463)
SB | 0.72 (389) 0.47 (389) 0.61 (388) 0.76 (389)
PC | 1.56(449) 2.11 (389) 1.34 (445) 1.59 (450)
SB+PC | 1.20(452) 1.63 (388) 0.75 (445) 1.22 (454)
SB+ML | 1.03(463) 1.32(389) 0.63(450) 0.82 (454)

Table 3: Ratios for the shifted geometric means (shift 10)
over nodes on 1nstances solved by both strategies. The first
value in a cell in row A and column B is the ratio of the

average number of nodes used by A to that of B. The second
value is the number of instances solved by both A and B.

39

https://ekhalil.com/files/papers/KhaLebSonNemDil16.pdf

Learning to Branch in Mixed Integer Programming, Khalil et al., AAAI-16,
https://ekhalil.com/files/papers/Khal. ebSonNemDil16.pdf

CPLEX-D SB PC SB4+PC
CPLEX-D
SB | 5/264/0/125/123
PC | 8/164/0/285/63 68/63/0/326/5
SB+PC | 8/227/0/225/60 72/66/7/315/6 15/320/0/125/12
SB+ML | 8/267/0/196/49 82/96/7/286/5 21/355/0/95/7 17/300/58/96/6
Table 4: Win-tie-loss matrix for the number of nodes. A

quintuple in a cell in row A and column B has: the num-
ber of absolute wins, wins, ties, losses and absolute losses
for A against B, w.r.t. the number of nodes.

40

https://ekhalil.com/files/papers/KhaLebSonNemDil16.pdf

