
Elias B. Khalil — 27/09/21

Empirical Algorithmics
MIE1666: Machine Learning for Mathematical Optimization

Machine Learning for

Combinatorial Optimization

——COMPETITION 2021——

Did I forget to hit
record? Please

remind me!

Largely based on the book Stochastic Local Search by Hoos and Stützle and related slides by the authors
Some slides from Algorithm Design by Kleinberg and Tardos

2

20 Chapter 1 Introduction

algorithms. Normal forms are types of syntactically restricted formulae such that
for an arbitrary formula F there is always at least one semantically equivalent
formula F ~ in normal form. Thus, each normal form induces a subclass of propo-
sitional formulae which is as expressively powerful as full propositional logic.
The two most commonly used normal forms, CNF and DNF, are introduced in
the following definition.

A literal is a propositional variable (called a positive literal) or its negation
(called a negative literal). Formulae o f the syntactic form Cl A c2 A . . . ACm
are called conjunctions, while formulae o f the form dl V d2 V . . . V dra are
called disjunctions.

A propositional formula F is in conjunctive normal form (CNF), if, and
only if, it is a conjunction over disjunctions o f literals. In this context, the
disjunctions are called clauses. A CNF formula F is in k-CNF, if, and only if,
all clauses o f F contain exactly k literals.

A propositional formula F is in disjunctive normal form (DNF), if, and
only if, it is a disjunction over conjunctions o f literals. In this case, the con-
junctions are called clauses. A DNF formula F is in k-DNF, if, and only if,
all clauses o f F contain exactly k literals.

Let us consider the following propositional formula in CNF:

F := v x2)
A vx)
A (~x i V ~x 2 V -~x 3)
A v

A v

A v

For this formula, we obtain the variable set Vat(F) = { x l , x 2 , x 3 , x 4 , x s } ;
consequently, there are 25 = 32 different variable assignments. Exactly one
of these, xl = x 2 = T, x3 = x 4 = x 5 = 2_, is a model, rendering F
satisfiable.

The Travelling Salesman Problem (TSP)

The motivation behind the Travelling Salesman Problem (also known as Travel-
ling Salesperson Problem) is the problem faced by a salesperson who needs to

1.2 Two Prototypical Combinatorial Problems 17

techniques and approaches. These are the Propositional Satisfiability Problem
(SAT), a prominent combinatorial decision problem which plays a central role in
several areas of computer science, and the Travelling Salesman Problem (TSP),
one of the most extensively studied combinatorial optimisation problems. Be-
sides their prominence and well established role in algorithm development, both
problems have the advantage of being conceptually simple, which facilitates the
development, analysis and presentation of algorithms and algorithmic ideas.
Both will be discussed in more detail in Part 2 of this book (see Chapters 6
and 8).

The Propositional Satisfiability Problem (SAT)

Roughly speaking, the Propositional Satisfiability Problem is, given a formula
in propositional logic, to decide whether there is an assignment of truth values
to the propositional variables appearing in this formula under which the for-
mula evaluates to 'true'. In the following, we present a formal definition of SAT.
While the details of this definition may not be crucial for comprehending the
restricted forms of the problem used in the remainder of this book, they are im-
portant for a deeper understanding of the nature and properties of the general
SAT problem.

Propositional logic is based on a formal language over an alphabet com-
prising propositional variables, truth values and logical operators. Using logical
operators, propositional variables and truth values are combined into proposi-
tional formulae which represent propositional statements. Formally, the syntax
of propositional logic can be defined in the following way:

S "- V u C u O u { (,)} is the alphabet of propositional logic, with V "=
{xi I i E N} denoting the countable infinite set o f propositional variables,
C "- {7-, • the set o f truth values (or propositional constants) true and
false, and O "- {-~, A, V} the set of propositional operators negation ('not'),
conjunction ('and') and disjunction ('or').

The set o f propositional formulae is characterised by the following induc-
tive definition:

�9 the truth values 7- and • are propositional formulae;

�9 each propositional variable xi C V is a propositional formula;

�9 if F is a propositional formula, then ~ F is also a propositional
formula;

3

20 Chapter 1 Introduction

algorithms. Normal forms are types of syntactically restricted formulae such that
for an arbitrary formula F there is always at least one semantically equivalent
formula F ~ in normal form. Thus, each normal form induces a subclass of propo-
sitional formulae which is as expressively powerful as full propositional logic.
The two most commonly used normal forms, CNF and DNF, are introduced in
the following definition.

A literal is a propositional variable (called a positive literal) or its negation
(called a negative literal). Formulae o f the syntactic form Cl A c2 A . . . ACm
are called conjunctions, while formulae o f the form dl V d2 V . . . V dra are
called disjunctions.

A propositional formula F is in conjunctive normal form (CNF), if, and
only if, it is a conjunction over disjunctions o f literals. In this context, the
disjunctions are called clauses. A CNF formula F is in k-CNF, if, and only if,
all clauses o f F contain exactly k literals.

A propositional formula F is in disjunctive normal form (DNF), if, and
only if, it is a disjunction over conjunctions o f literals. In this case, the con-
junctions are called clauses. A DNF formula F is in k-DNF, if, and only if,
all clauses o f F contain exactly k literals.

Let us consider the following propositional formula in CNF:

F := v x2)
A vx)
A (~x i V ~x 2 V -~x 3)
A v

A v

A v

For this formula, we obtain the variable set Vat(F) = { x l , x 2 , x 3 , x 4 , x s } ;
consequently, there are 25 = 32 different variable assignments. Exactly one
of these, xl = x 2 = T, x3 = x 4 = x 5 = 2_, is a model, rendering F
satisfiable.

The Travelling Salesman Problem (TSP)

The motivation behind the Travelling Salesman Problem (also known as Travel-
ling Salesperson Problem) is the problem faced by a salesperson who needs to

1.2 Two Prototypical Combinatorial Problems 17

techniques and approaches. These are the Propositional Satisfiability Problem
(SAT), a prominent combinatorial decision problem which plays a central role in
several areas of computer science, and the Travelling Salesman Problem (TSP),
one of the most extensively studied combinatorial optimisation problems. Be-
sides their prominence and well established role in algorithm development, both
problems have the advantage of being conceptually simple, which facilitates the
development, analysis and presentation of algorithms and algorithmic ideas.
Both will be discussed in more detail in Part 2 of this book (see Chapters 6
and 8).

The Propositional Satisfiability Problem (SAT)

Roughly speaking, the Propositional Satisfiability Problem is, given a formula
in propositional logic, to decide whether there is an assignment of truth values
to the propositional variables appearing in this formula under which the for-
mula evaluates to 'true'. In the following, we present a formal definition of SAT.
While the details of this definition may not be crucial for comprehending the
restricted forms of the problem used in the remainder of this book, they are im-
portant for a deeper understanding of the nature and properties of the general
SAT problem.

Propositional logic is based on a formal language over an alphabet com-
prising propositional variables, truth values and logical operators. Using logical
operators, propositional variables and truth values are combined into proposi-
tional formulae which represent propositional statements. Formally, the syntax
of propositional logic can be defined in the following way:

S "- V u C u O u { (,)} is the alphabet of propositional logic, with V "=
{xi I i E N} denoting the countable infinite set o f propositional variables,
C "- {7-, • the set o f truth values (or propositional constants) true and
false, and O "- {-~, A, V} the set of propositional operators negation ('not'),
conjunction ('and') and disjunction ('or').

The set o f propositional formulae is characterised by the following induc-
tive definition:

�9 the truth values 7- and • are propositional formulae;

�9 each propositional variable xi C V is a propositional formula;

�9 if F is a propositional formula, then ~ F is also a propositional
formula;

See nice application in Product Configuration: https://
www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf

https://www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf
https://www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf
https://www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf

4

20 Chapter 1 Introduction

algorithms. Normal forms are types of syntactically restricted formulae such that
for an arbitrary formula F there is always at least one semantically equivalent
formula F ~ in normal form. Thus, each normal form induces a subclass of propo-
sitional formulae which is as expressively powerful as full propositional logic.
The two most commonly used normal forms, CNF and DNF, are introduced in
the following definition.

A literal is a propositional variable (called a positive literal) or its negation
(called a negative literal). Formulae o f the syntactic form Cl A c2 A . . . ACm
are called conjunctions, while formulae o f the form dl V d2 V . . . V dra are
called disjunctions.

A propositional formula F is in conjunctive normal form (CNF), if, and
only if, it is a conjunction over disjunctions o f literals. In this context, the
disjunctions are called clauses. A CNF formula F is in k-CNF, if, and only if,
all clauses o f F contain exactly k literals.

A propositional formula F is in disjunctive normal form (DNF), if, and
only if, it is a disjunction over conjunctions o f literals. In this case, the con-
junctions are called clauses. A DNF formula F is in k-DNF, if, and only if,
all clauses o f F contain exactly k literals.

Let us consider the following propositional formula in CNF:

F := v x2)
A vx)
A (~x i V ~x 2 V -~x 3)
A v

A v

A v

For this formula, we obtain the variable set Vat(F) = { x l , x 2 , x 3 , x 4 , x s } ;
consequently, there are 25 = 32 different variable assignments. Exactly one
of these, xl = x 2 = T, x3 = x 4 = x 5 = 2_, is a model, rendering F
satisfiable.

The Travelling Salesman Problem (TSP)

The motivation behind the Travelling Salesman Problem (also known as Travel-
ling Salesperson Problem) is the problem faced by a salesperson who needs to

1.2 Two Prototypical Combinatorial Problems 17

techniques and approaches. These are the Propositional Satisfiability Problem
(SAT), a prominent combinatorial decision problem which plays a central role in
several areas of computer science, and the Travelling Salesman Problem (TSP),
one of the most extensively studied combinatorial optimisation problems. Be-
sides their prominence and well established role in algorithm development, both
problems have the advantage of being conceptually simple, which facilitates the
development, analysis and presentation of algorithms and algorithmic ideas.
Both will be discussed in more detail in Part 2 of this book (see Chapters 6
and 8).

The Propositional Satisfiability Problem (SAT)

Roughly speaking, the Propositional Satisfiability Problem is, given a formula
in propositional logic, to decide whether there is an assignment of truth values
to the propositional variables appearing in this formula under which the for-
mula evaluates to 'true'. In the following, we present a formal definition of SAT.
While the details of this definition may not be crucial for comprehending the
restricted forms of the problem used in the remainder of this book, they are im-
portant for a deeper understanding of the nature and properties of the general
SAT problem.

Propositional logic is based on a formal language over an alphabet com-
prising propositional variables, truth values and logical operators. Using logical
operators, propositional variables and truth values are combined into proposi-
tional formulae which represent propositional statements. Formally, the syntax
of propositional logic can be defined in the following way:

S "- V u C u O u { (,)} is the alphabet of propositional logic, with V "=
{xi I i E N} denoting the countable infinite set o f propositional variables,
C "- {7-, • the set o f truth values (or propositional constants) true and
false, and O "- {-~, A, V} the set of propositional operators negation ('not'),
conjunction ('and') and disjunction ('or').

The set o f propositional formulae is characterised by the following induc-
tive definition:

�9 the truth values 7- and • are propositional formulae;

�9 each propositional variable xi C V is a propositional formula;

�9 if F is a propositional formula, then ~ F is also a propositional
formula;

Example of a (greedy) construction heuristic for SAT

start with an empty variable assignment

in each step select an unassigned variable
and set it to a truth value

– if unsatisfied clause with only one unassigned variable,
assign this variable to satisfy this clause

– otherwise choose variable and truth value such that
maximal number of clauses become satisfied

Hoos / Stützle Stochastic Search Algorithms 38

Graph Optimization

Travelling Salesperson Problem (TSP)

cost = 1

cost = 2 optimal solution, cost = 7

5

6

1.3 Computational Complexity 23

Figure 1.1 A graphic representation of the geographic TSP instance 'ulyssesl6' and
its optimal solution (dashed line); the solid line and arrows indicate the sequence
in which Homer's Ulysses supposedly visited the 16 locations. See Example 1.2 for
details.

1.3 Computational Complexity
A natural way for solving most combinatorial decision and optimisation prob-
lems is, given a problem instance, to search for solutions in the space of its
candidate solutions. For that reason, these problems are sometimes also char-
acterised as search problems. However, for a given instance of a combinatorial
problem, the set of candidate solutions is very large, typically at least exponen-
tial in the size of that instance. For example, given a SAT instance with 100
variables, typically all 2 ~~176 different truth assignments are considered candidate
solutions. This raises the following question: 'Is it possible to search such vast
spaces efficiently?' More precisely, we are interested in the time required for
solving an instance of a combinatorial problem as a function of the size of this
instance.

Questions like this lie at the core of computational complexity theory, a well-
established field of computer science with considerable impact on other areas. In
the context of this book, complexity theory plays a role, because the primary field

cost = 1

cost = 2

7

Nearest Neighbour heuristic for the TSP:

always choose at the current city the closest unvisited city

– choose an arbitrary initial city

– at the th step choose city to be the city that
minimises

running time

worst case performance

other construction heuristics for TSP are available

Hoos / Stützle Stochastic Search Algorithms 36

8

Desirable scaling property. When the input size doubles, the algorithm

should slow down by at most some multiplicative constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

Polynomial running time

7

corresponds

to C = 2d

There exist constants c > 0 and d > 0 such that,
for every input of size n, the running time of the algorithm

is bounded above by c nd primitive computational steps.

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

9

Worst-case analysis

Worst case. Running time guarantee for any input of size n.

独Generally captures efficiency in practice.

独Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice

because the worst-case instances don’t arise.

9

simplex algorithm Linux grep k-means algorithm

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

10

Big O notation

Upper bounds. f(n) is O(g(n)) if there exist constants c > 0 and n0 ≥ 0
such that 0 ≤ f(n) ≤ c · g (n) for all n ≥ n0.

Ex. f(n) = 32n2 + 17n + 1.

独f(n) is O(n2).

独f(n) is neither O(n) nor O(n log n).

Typical usage. Insertion sort makes O(n2) compares to sort n elements.

12

choose c = 50, n0 = 1

c · g(n)

nn0

f(n)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

11
13

Let f(n) = 3n2 + 17 n log2 n + 1000. Which of the following are true?

A. f(n) is O(n2).  

B. f(n) is O(n3).  

C. Both A and B.  

D. Neither A nor B.

Analysis of algorithms: quiz 1

choose c = 1020, n0 = 1

choose c = 1020, n0 = 1

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Polynomial time

Polynomial time. Running time is O(nk) for some constant k > 0.

Independent set of size k. Given a graph, find k nodes such that no two

are joined by an edge.

O(nk) algorithm. Enumerate all subsets of k nodes.

独Check whether S is an independent set of size k takes O(k2) time.

独Number of k-element subsets =

独O(k2 nk / k!) = O(nk).

46poly-time for k = 17, but not practical

k is a constant

�
n

k

�
=

n(n � 1)(n � 2) � · · · � (n � k + 1)

k(k � 1)(k � 2) � · · · � 1
� nk

k!

FOREACH subset S of k nodes:

Check whether S is an independent set.

IF (S is an independent set)

RETURN S.
independent set of size 3

12

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Exponential time

Exponential time. Running time is O(2nk) for some constant k > 0.

Independent set. Given a graph, find independent set of max cardinality.

O(n2 2n) algorithm. Enumerate all subsets of n elements.

47

S* ← ∅.

FOREACH subset S of n nodes:

Check whether S is an independent set.

IF (S is an independent set and ⎢S⎟ > ⎢S*⎟)

S* ← S.

RETURN S*.
independent set of max cardinality

13

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Exponential time

Exponential time. Running time is O(2nk) for some constant k > 0.

Euclidean TSP. Given n points in the plane, find a tour of minimum length.

O(n ! n!) algorithm. Enumerate all permutations of length n.

48

π* ← ∅.

FOREACH permutation π of n points:

Compute length of tour corresponding to π.

IF (length(π) < length(π*))

π* ← π.

RETURN π*. for simplicity, we’ll assume Euclidean
distances are rounded to nearest integer
(to avoid issues with infinite precision)

14

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

15

20 Chapter 1 Introduction

algorithms. Normal forms are types of syntactically restricted formulae such that
for an arbitrary formula F there is always at least one semantically equivalent
formula F ~ in normal form. Thus, each normal form induces a subclass of propo-
sitional formulae which is as expressively powerful as full propositional logic.
The two most commonly used normal forms, CNF and DNF, are introduced in
the following definition.

A literal is a propositional variable (called a positive literal) or its negation
(called a negative literal). Formulae o f the syntactic form Cl A c2 A . . . ACm
are called conjunctions, while formulae o f the form dl V d2 V . . . V dra are
called disjunctions.

A propositional formula F is in conjunctive normal form (CNF), if, and
only if, it is a conjunction over disjunctions o f literals. In this context, the
disjunctions are called clauses. A CNF formula F is in k-CNF, if, and only if,
all clauses o f F contain exactly k literals.

A propositional formula F is in disjunctive normal form (DNF), if, and
only if, it is a disjunction over conjunctions o f literals. In this case, the con-
junctions are called clauses. A DNF formula F is in k-DNF, if, and only if,
all clauses o f F contain exactly k literals.

Let us consider the following propositional formula in CNF:

F := v x2)
A vx)
A (~x i V ~x 2 V -~x 3)
A v

A v

A v

For this formula, we obtain the variable set Vat(F) = { x l , x 2 , x 3 , x 4 , x s } ;
consequently, there are 25 = 32 different variable assignments. Exactly one
of these, xl = x 2 = T, x3 = x 4 = x 5 = 2_, is a model, rendering F
satisfiable.

The Travelling Salesman Problem (TSP)

The motivation behind the Travelling Salesman Problem (also known as Travel-
ling Salesperson Problem) is the problem faced by a salesperson who needs to

Example of a (greedy) construction heuristic for SAT

start with an empty variable assignment

in each step select an unassigned variable
and set it to a truth value

– if unsatisfied clause with only one unassigned variable,
assign this variable to satisfy this clause

– otherwise choose variable and truth value such that
maximal number of clauses become satisfied

Hoos / Stützle Stochastic Search Algorithms 38

Iterative Improvement for SAT

initialisation: randomly chosen, complete truth assignment

neighbourhood: variable assignments are neighbours iff they
differ in truth value of one variable

objective function: number of clauses unsatisfied under given
assignment

Hoos / Stützle Stochastic Search Algorithms 43

cost = 1

cost = 2

16

Nearest Neighbour heuristic for the TSP:

always choose at the current city the closest unvisited city

– choose an arbitrary initial city

– at the th step choose city to be the city that
minimises

running time

worst case performance

other construction heuristics for TSP are available

Hoos / Stützle Stochastic Search Algorithms 36

Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44

cost = 1

cost = 2

16

Nearest Neighbour heuristic for the TSP:

always choose at the current city the closest unvisited city

– choose an arbitrary initial city

– at the th step choose city to be the city that
minimises

running time

worst case performance

other construction heuristics for TSP are available

Hoos / Stützle Stochastic Search Algorithms 36

Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44

Problems with local search?

17

solution space

ob
je

ct
iv

e
fu

nc
ti

on
 v

al
ue

global optimum

local optima

Hoos / Stützle Stochastic Search Algorithms 46

Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44

18

solution space

ob
je
ct
iv
e
fu
nc
ti
on
 v
al
ue

global optimum

local optima

Hoos / Stützle Stochastic Search Algorithms 46Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44

Stochastic Local Search:

randomise initialisation step

– random initial solutions

– randomised construction heuristics

randomise search steps
such that suboptimal/worsening steps are allowed
improved performance & robustness

typically, degree of randomisation controlled by noise
parameter

allows to invest arbitrary computation times

Hoos / Stützle Stochastic Search Algorithms 47

18

solution space

ob
je
ct
iv
e
fu
nc
ti
on
 v
al
ue

global optimum

local optima

Hoos / Stützle Stochastic Search Algorithms 46Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44

Stochastic Local Search:

randomise initialisation step

– random initial solutions

– randomised construction heuristics

randomise search steps
such that suboptimal/worsening steps are allowed
improved performance & robustness

typically, degree of randomisation controlled by noise
parameter

allows to invest arbitrary computation times

Hoos / Stützle Stochastic Search Algorithms 47

Problems with SLS?

19

solution space

ob
je
ct
iv
e
fu
nc
ti
on
 v
al
ue

global optimum

local optima

Hoos / Stützle Stochastic Search Algorithms 46Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44

Stochastic Local Search:

randomise initialisation step

– random initial solutions

– randomised construction heuristics

randomise search steps
such that suboptimal/worsening steps are allowed
improved performance & robustness

typically, degree of randomisation controlled by noise
parameter

allows to invest arbitrary computation times

Hoos / Stützle Stochastic Search Algorithms 47

Randomised Iterative Improvement:

initialise search at some point of search space

search steps:

– with probability , move from current search position
to a randomly selected neighbouring position

– otherwise, move from current search position
to neighbouring position with better objective function
value

Hoos / Stützle Stochastic Search Algorithms 50

20

Tabu Search

Combinatorial search technique which heavily relies on the use of
an explicit memory of the search process [Glover 1989, 1990]

systematic use of memory to guide search process

memory typically contains only specific attributes of
previously seen solutions

simple tabu search strategies exploit only short term memory

more complex tabu search strategies exploit long term memory

Hoos / Stützle Stochastic Search Algorithms 64

21

Simple tabu search algorithm – exploiting short term memory

in each step move to best neighbouring solution although it
may be worse than current one

to avoid cycles, tabu search tries to avoid revisiting previously
seen solutions

avoid storing complete solutions by basing the memory on
solution attributes of recently seen solutions

tabu solution attributes are often defined via local search moves

a tabu list stores attributes of the most recently visited
solutions; parameter is called tabu list length or tabu tenure

solutions which contain tabu attributes are forbidden

Hoos / Stützle Stochastic Search Algorithms 65

22

problem: previously unseen solutions may be tabu
use of aspiration criteria to overwrite tabu status

stopping criteria:

– all neighbored solutions are tabu

– maximum number of iterations

– number of iterations without improvement

appropriate choice of tabu tenure critical for performance
robust tabu search [Taillard, 1991], reactive tabu search

[Battiti, Tecchiolli, 1994–1997]

Hoos / Stützle Stochastic Search Algorithms 66

23

Example: Tabu Search for SAT / MAX-SAT
[Hansen & Jaumard, 1990; Selman & Kautz, 1994]

Neighborhood: assignments which differ in exactly one variable
instantiation

Tabu attributes: variables

Tabu criterion: flipping a variable is forbidden for a given number
of iterations

Aspiration criterion: if flipping a tabu variable leads to a better
solution, the variable’s tabu status is overwritten

Hoos / Stützle Stochastic Search Algorithms 67

24

Analysing Stochastic Search Behaviour

Many SLS algorithms ...

perform well in practice

are incomplete, i.e., cannot be guaranteed to find
(optimal) solutions

are hard to analyse theoretically

empirical methods are used to analyse and characterise
their behaviour.

Hoos / Stützle Stochastic Search Algorithms 98

25

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/intro.pdf

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/intro.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/intro.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/intro.pdf

26

optimization vs decision (problem)

complete vs incomplete exact vs heuristic

stochastic vs deterministic

sequential vs parallel

27

Raw run-time data (each spike one run)

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

ru
n-

tim
e

[C
PU

 s
ec

]

run #

Run-Time Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

P(
so

lv
e)

run-time [CPU sec]

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf

28 Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf

RTD Graphs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100000 200000 300000 400000 500000 600000 700000 800000

P(
so

lv
e)

run-time [search steps]

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

P(
so

lv
e)

run-time [search steps]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06

P(
so

lv
e)

run-time [search steps]

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06
1-

P(
so

lv
e)

run-time [search steps]

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m3-all.pdf

29

Typical run-time distribution for SLS algorithm applied to
hard instance of combinatorial optimisation problem:

P(solve)

rel. soln.
quality [%]

run-time [CPU sec]

1
0.8
0.6
0.4
0.2

0

2.5
2

1.5
1

0.5
0 0.1

1
10

100

Stochastic Local Search: Foundations and Applications 22

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

30

Qualified RTDs for various solution qualities:

relative solution quality [%]

0
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.5 1 1.5 2 2.5

10s
3.2s
 1s
0.3s
0.1s

P(
so

lv
e)

run-time [CPU sec]

0.01
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 1 10 100 1 000

0.8%
0.6%
0.4%
0.2%

opt

P(
so

lv
e)

Stochastic Local Search: Foundations and Applications 23

Typical run-time distribution for SLS algorithm applied to
hard instance of combinatorial optimisation problem:

P(solve)

rel. soln.
quality [%]

run-time [CPU sec]

1
0.8
0.6
0.4
0.2

0

2.5
2

1.5
1

0.5
0 0.1

1
10

100

Stochastic Local Search: Foundations and Applications 22

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

31

Solution quality distributions for various run-times:

relative solution quality [%]

0
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.5 1 1.5 2 2.5

10s
3.2s
 1s
0.3s
0.1s

P(
so

lv
e)

run-time [CPU sec]

0.01
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 1 10 100 1 000

0.8%
0.6%
0.4%
0.2%

opt

P(
so

lv
e)

Stochastic Local Search: Foundations and Applications 26

Typical solution quality distributions for SLS algorithm applied
to hard instance of combinatorial optimisation problem:

P(solve)

rel. soln.
quality [%]

run-time [CPU sec]

1
0.8
0.6
0.4
0.2

0

2.5
2

1.5
1

0.5
0 0.1

1
10

100

Stochastic Local Search: Foundations and Applications 25

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

32

Typical SQT curves for SLS optimisation algorithms applied to
instance of hard combinatorial optimisation problem:

100

10

1

0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ru
n-

tim
e

[C
PU

 s
ec

]

relative solution quality [%]

0.9 quantile
0.75 quantile

median

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 1 10 100

re
la

tiv
e

so
lu

tio
n

qu
al

ity
 [%

]

run-time [CPU sec]

0.75 quantile
0.9 quantile

median

Stochastic Local Search: Foundations and Applications 31

Holger Hoos, CPSC536H at UBC: http://www.cs.ubc.ca/
labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

Typical SQT curves for SLS optimisation algorithms applied to
instance of hard combinatorial optimisation problem:

P(solve)

rel. soln.
quality [%]

run-time [CPU sec]

1
0.8
0.6
0.4
0.2

0

2.5
2

1.5
1

0.5
0 0.1

1
10

100

Stochastic Local Search: Foundations and Applications 30

SQT: Solution Quality over Time

http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf
http://www.cs.ubc.ca/labs/beta/Courses/CPSC536H-12/Slides/m5-all.pdf

Mixed Integer (Linear) Program

33

max c|x+ h|y
Ax+Gy  b

x � 0 and integer, y � 0

A 2 Rm⇥n, G 2 Rm⇥p, b 2 Rm⇥1, c 2 Rn⇥1, h 2 Rp⇥1

x 2 Rn⇥1, y 2 Rp⇥1

!

! !

!

7.4 LP-Based Branch and Bound 121

Initialization
Initial problem S with

reformulation P on list
Z = −∞

Incumbent x∗ void

Call primal heuristic
If solution xH of value ZH ,

Z = ZH , x∗ = xH

Return two subproblems Si
1 and Si

2
with formulations P i

1 and P i
2

and upper bounds Z
i

Y

If xi(LP) integer, update primal bound
Z = Z

i and incumbent x∗ = xi(LP)
Prune by optimality

Y

Y

Y

Y

N

N

N

N

N

If Z
i ≤ Z, prune by bound

If P i is empty, prune by infeasibility

Solve LP relaxation over P i

Dual bound Z
i = LP value

xi(LP) = LP solution

Remove problem from listSi

with formulation P i

and dual bound Z
i

If Z
i ≤ Z, prune by bound

Y

List
Empty? STOP

Incumbent optimal

Figure 7.10 Branch-and-bound flow chart.

Pruning rule

Pruning rule

Pruning rule

Primal heuristic

Node selection

Solving LP Relaxation

Pruning rule

Branching variable selection

Termination criterion

35

36

https://pubsonline.informs.org/doi/pdf/10.1287/educ.2013.0112

https://pubsonline.informs.org/doi/pdf/10.1287/educ.2013.0112

37

38

39

Learning to Branch in Mixed Integer Programming, Khalil et al., AAAI-16,

https://ekhalil.com/files/papers/KhaLebSonNemDil16.pdf

https://ekhalil.com/files/papers/KhaLebSonNemDil16.pdf

40

Learning to Branch in Mixed Integer Programming, Khalil et al., AAAI-16,

https://ekhalil.com/files/papers/KhaLebSonNemDil16.pdf

https://ekhalil.com/files/papers/KhaLebSonNemDil16.pdf

