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algorithms. Normal forms are types of syntactically restricted formulae such that 
for an arbitrary formula F there is always at least one semantically equivalent 
formula F ~ in normal form. Thus, each normal form induces a subclass of propo- 
sitional formulae which is as expressively powerful as full propositional logic. 
The two most commonly used normal forms, CNF and DNF, are introduced in 
the following definition. 

A literal is a propositional variable (called a positive literal) or its negation 
(called a negative literal). Formulae o f  the syntactic form Cl A c2 A . . .  ACm 
are called conjunctions, while formulae o f  the form dl V d2 V . . .  V dra are 
called disjunctions. 

A propositional formula F is in conjunctive normal form (CNF), if, and 
only if, it is a conjunction over disjunctions o f  literals. In this context, the 
disjunctions are called clauses. A CNF formula F is in k-CNF, if, and only if, 
all clauses o f  F contain exactly k literals. 

A propositional formula F is in disjunctive normal form (DNF), if, and 
only if, it is a disjunction over conjunctions o f  literals. In this case, the con- 
junctions are called clauses. A DNF formula F is in k-DNF, if, and only if, 
all clauses o f  F contain exactly k literals. 

Let us consider the following propositional formula in CNF: 

F := v x2) 
A vx ) 
A (~x i V ~x 2 V -~x 3) 
A v 

A v 

A v 

For this formula, we obtain the variable set Vat(F) = { x l , x 2 , x 3 , x 4 , x s } ;  
consequently, there are 25 = 32 different variable assignments. Exactly one 
of these, xl = x 2  = T, x3 = x 4  = x 5  = 2_, is a model, rendering F 
satisfiable. 

The Travelling Salesman Problem (TSP) 

The motivation behind the Travelling Salesman Problem (also known as Travel- 
ling Salesperson Problem) is the problem faced by a salesperson who needs to 

1.2 Two Prototypical Combinatorial Problems 17 

techniques and approaches. These are the Propositional Satisfiability Problem 
(SAT), a prominent combinatorial decision problem which plays a central role in 
several areas of computer science, and the Travelling Salesman Problem (TSP), 
one of the most extensively studied combinatorial optimisation problems. Be- 
sides their prominence and well established role in algorithm development, both 
problems have the advantage of being conceptually simple, which facilitates the 
development, analysis and presentation of algorithms and algorithmic ideas. 
Both will be discussed in more detail in Part 2 of this book (see Chapters 6 
and 8). 

The Propositional Satisfiability Problem (SAT) 

Roughly speaking, the Propositional Satisfiability Problem is, given a formula 
in propositional logic, to decide whether there is an assignment of truth values 
to the propositional variables appearing in this formula under which the for- 
mula evaluates to 'true'. In the following, we present a formal definition of SAT. 
While the details of this definition may not be crucial for comprehending the 
restricted forms of the problem used in the remainder of this book, they are im- 
portant for a deeper understanding of the nature and properties of the general 
SAT problem. 

Propositional logic is based on a formal language over an alphabet com- 
prising propositional variables, truth values and logical operators. Using logical 
operators, propositional variables and truth values are combined into proposi- 
tional formulae which represent propositional statements. Formally, the syntax 
of propositional logic can be defined in the following way: 

S "- V u C u O u { (,)} is the alphabet of propositional logic, with V "= 
{xi I i E N} denoting the countable infinite set o f  propositional variables, 
C "- {7-, • the set o f  truth values (or propositional constants) true and 
false, and O "- {-~, A, V} the set of propositional operators negation ('not'), 
conjunction ('and') and disjunction ('or'). 

The set o f  propositional formulae is characterised by the following induc- 
tive definition: 

�9 the truth values 7- and • are propositional formulae; 

�9 each propositional variable xi C V is a propositional formula; 

�9 if F is a propositional formula, then ~ F  is also a propositional 
formula; 
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See nice application in Product Configuration: https://
www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf 

https://www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf
https://www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf
https://www.cs.utexas.edu/~isil/cs389L/lecture4-6up.pdf
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Example of a (greedy) construction heuristic for SAT

start with an empty variable assignment

in each step select an unassigned variable
and set it to a truth value

– if unsatisfied clause with only one unassigned variable,
assign this variable to satisfy this clause

– otherwise choose variable and truth value such that
maximal number of clauses become satisfied

Hoos / Stützle Stochastic Search Algorithms 38



Graph Optimization

Travelling Salesperson Problem (TSP)

cost = 1 

cost = 2 optimal solution, cost = 7 
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1.3 Computational Complexity 23 

Figure 1.1 A graphic representation of the geographic TSP instance 'ulyssesl6' and 
its optimal solution (dashed line); the solid line and arrows indicate the sequence 
in which Homer's Ulysses supposedly visited the 16 locations. See Example 1.2 for 
details. 

1.3 Computational Complexity 
A natural way for solving most combinatorial decision and optimisation prob- 
lems is, given a problem instance, to search for solutions in the space of its 
candidate solutions. For that reason, these problems are sometimes also char- 
acterised as search problems. However, for a given instance of a combinatorial 
problem, the set of candidate solutions is very large, typically at least exponen- 
tial in the size of that instance. For example, given a SAT instance with 100 
variables, typically all 2 ~~176 different truth assignments are considered candidate 
solutions. This raises the following question: 'Is it possible to search such vast 
spaces efficiently?' More precisely, we are interested in the time required for 
solving an instance of a combinatorial problem as a function of the size of this 
instance. 

Questions like this lie at the core of computational complexity theory, a well- 
established field of computer science with considerable impact on other areas. In 
the context of this book, complexity theory plays a role, because the primary field 



cost = 1 

cost = 2 
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Nearest Neighbour heuristic for the TSP:

always choose at the current city the closest unvisited city

– choose an arbitrary initial city

– at the th step choose city to be the city that
minimises

running time

worst case performance

other construction heuristics for TSP are available

Hoos / Stützle Stochastic Search Algorithms 36
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Desirable scaling property.  When the input size doubles, the algorithm 

should slow down by at most some multiplicative constant factor C.  

 

 

 

Def.  An algorithm is poly-time if the above scaling property holds.

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

Polynomial running time

7

corresponds 

to C = 2d 

There exist constants c > 0 and d > 0 such that,
for every input of size n, the running time of the algorithm

is bounded above by c nd primitive computational steps.

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/ 

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/


9

Worst-case analysis

Worst case.  Running time guarantee for any input of size n. 

独Generally captures efficiency in practice. 

独Draconian view, but hard to find effective alternative. 

 

 

Exceptions.  Some exponential-time algorithms are used widely in practice 

because the worst-case instances don’t arise.

9

simplex algorithm Linux grep k-means algorithm

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/ 

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/
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Big O notation

Upper bounds.  f(n) is O(g(n)) if there exist constants c > 0 and n0  ≥  0 
such that 0 ≤  f(n)  ≤  c · g (n) for all n  ≥  n0. 

 

Ex.  f(n) = 32n2 + 17n + 1. 

独f(n) is O(n2). 

独f(n) is neither O(n) nor O(n log n). 
 

 

Typical usage.  Insertion sort makes O(n2) compares to sort n elements.

12

choose c = 50, n0 = 1

c · g(n)

nn0

f(n)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/ 

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/
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Let f(n) = 3n2 + 17 n log2 n + 1000. Which of the following are true?

A.  f(n) is O(n2).  

B.  f(n) is O(n3).  

C.  Both A and B.  

D.  Neither A nor B.

Analysis of algorithms: quiz 1

choose c = 1020, n0 = 1

choose c = 1020, n0 = 1

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/ 

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/


Polynomial time

Polynomial time.  Running time is O(nk) for some constant k > 0. 

 

Independent set of size k.  Given a graph, find k nodes such that no two 

are joined by an edge. 

 

O(nk) algorithm.  Enumerate all subsets of k nodes. 

 

 

 

 

 

 

独Check whether S is an independent set of size k takes O(k2) time. 

独Number of k-element subsets =  

独O(k2 nk / k!) = O(nk).

46poly-time for k = 17, but not practical

k is a constant

�
n

k

�
=

n(n � 1)(n � 2) � · · · � (n � k + 1)

k(k � 1)(k � 2) � · · · � 1
� nk

k!

FOREACH  subset S of k nodes:

Check whether S is an independent set.

IF  (S is an independent set)

RETURN  S.
independent set of size 3

12

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/ 

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/


Exponential time

Exponential time.  Running time is O(2nk ) for some constant k > 0. 

 

Independent set.  Given a graph, find independent set of max cardinality. 

 

O(n2 2n) algorithm.  Enumerate all subsets of n elements.

47

S*  ← ∅.

FOREACH  subset S of n nodes:

Check whether S is an independent set.

IF  (S is an independent set and ⎢S⎟ > ⎢S*⎟)

S*  ← S.

RETURN  S*.
independent set of max cardinality

13

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/ 

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/


Exponential time

Exponential time.  Running time is O(2nk ) for some constant k > 0. 

 

Euclidean TSP.  Given n points in the plane, find a tour of minimum length. 

 

O(n ! n!) algorithm.  Enumerate all permutations of length n.

48

π*  ← ∅.

FOREACH  permutation π of n points:

Compute length of tour corresponding to π.

IF  (length(π) < length(π*))

π*  ← π.

RETURN  π*. for simplicity, we’ll assume Euclidean 
distances are rounded to nearest integer 
(to avoid issues with infinite precision)

14

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/ 

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/
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For this formula, we obtain the variable set Vat(F) = { x l , x 2 , x 3 , x 4 , x s } ;  
consequently, there are 25 = 32 different variable assignments. Exactly one 
of these, xl = x 2  = T, x3 = x 4  = x 5  = 2_, is a model, rendering F 
satisfiable. 

The Travelling Salesman Problem (TSP) 

The motivation behind the Travelling Salesman Problem (also known as Travel- 
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Example of a (greedy) construction heuristic for SAT

start with an empty variable assignment

in each step select an unassigned variable
and set it to a truth value

– if unsatisfied clause with only one unassigned variable,
assign this variable to satisfy this clause

– otherwise choose variable and truth value such that
maximal number of clauses become satisfied

Hoos / Stützle Stochastic Search Algorithms 38

Iterative Improvement for SAT

initialisation: randomly chosen, complete truth assignment

neighbourhood: variable assignments are neighbours iff they
differ in truth value of one variable

objective function: number of clauses unsatisfied under given
assignment

Hoos / Stützle Stochastic Search Algorithms 43
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Nearest Neighbour heuristic for the TSP:

always choose at the current city the closest unvisited city

– choose an arbitrary initial city

– at the th step choose city to be the city that
minimises

running time

worst case performance

other construction heuristics for TSP are available

Hoos / Stützle Stochastic Search Algorithms 36

Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44
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Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges
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neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44

Problems with local search?
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Hoos / Stützle Stochastic Search Algorithms 46
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Hoos / Stützle Stochastic Search Algorithms 46Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44

Stochastic Local Search:

randomise initialisation step

– random initial solutions

– randomised construction heuristics

randomise search steps
such that suboptimal/worsening steps are allowed
improved performance & robustness

typically, degree of randomisation controlled by noise
parameter

allows to invest arbitrary computation times

Hoos / Stützle Stochastic Search Algorithms 47
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Stochastic Local Search:

randomise initialisation step

– random initial solutions

– randomised construction heuristics

randomise search steps
such that suboptimal/worsening steps are allowed
improved performance & robustness

typically, degree of randomisation controlled by noise
parameter

allows to invest arbitrary computation times

Hoos / Stützle Stochastic Search Algorithms 47

Problems with SLS?
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Stochastic Local Search:

randomise initialisation step

– random initial solutions

– randomised construction heuristics

randomise search steps
such that suboptimal/worsening steps are allowed
improved performance & robustness

typically, degree of randomisation controlled by noise
parameter

allows to invest arbitrary computation times

Hoos / Stützle Stochastic Search Algorithms 47

Randomised Iterative Improvement:

initialise search at some point of search space

search steps:

– with probability , move from current search position
to a randomly selected neighbouring position

– otherwise, move from current search position
to neighbouring position with better objective function
value

Hoos / Stützle Stochastic Search Algorithms 50
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Tabu Search

Combinatorial search technique which heavily relies on the use of
an explicit memory of the search process [Glover 1989, 1990]

systematic use of memory to guide search process

memory typically contains only specific attributes of
previously seen solutions

simple tabu search strategies exploit only short term memory

more complex tabu search strategies exploit long term memory

Hoos / Stützle Stochastic Search Algorithms 64
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Simple tabu search algorithm – exploiting short term memory

in each step move to best neighbouring solution although it
may be worse than current one

to avoid cycles, tabu search tries to avoid revisiting previously
seen solutions

avoid storing complete solutions by basing the memory on
solution attributes of recently seen solutions

tabu solution attributes are often defined via local search moves

a tabu list stores attributes of the most recently visited
solutions; parameter is called tabu list length or tabu tenure

solutions which contain tabu attributes are forbidden

Hoos / Stützle Stochastic Search Algorithms 65
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problem: previously unseen solutions may be tabu
use of aspiration criteria to overwrite tabu status

stopping criteria:

– all neighbored solutions are tabu

– maximum number of iterations

– number of iterations without improvement

appropriate choice of tabu tenure critical for performance
robust tabu search [Taillard, 1991], reactive tabu search

[Battiti, Tecchiolli, 1994–1997]

Hoos / Stützle Stochastic Search Algorithms 66
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Example: Tabu Search for SAT / MAX-SAT
[Hansen & Jaumard, 1990; Selman & Kautz, 1994]

Neighborhood: assignments which differ in exactly one variable
instantiation

Tabu attributes: variables

Tabu criterion: flipping a variable is forbidden for a given number
of iterations

Aspiration criterion: if flipping a tabu variable leads to a better
solution, the variable’s tabu status is overwritten

Hoos / Stützle Stochastic Search Algorithms 67
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Analysing Stochastic Search Behaviour

Many SLS algorithms ...

perform well in practice

are incomplete, i.e., cannot be guaranteed to find
(optimal) solutions

are hard to analyse theoretically

empirical methods are used to analyse and characterise
their behaviour.

Hoos / Stützle Stochastic Search Algorithms 98
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optimization vs decision (problem)

complete vs incomplete exact vs heuristic

stochastic vs deterministic  

sequential vs parallel  
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Raw run-time data (each spike one run)
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RTD Graphs
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Typical run-time distribution for SLS algorithm applied to
hard instance of combinatorial optimisation problem:

P(solve)

rel. soln.
quality [%]

run-time [CPU sec]
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Qualified RTDs for various solution qualities:

relative solution quality [%]
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Typical run-time distribution for SLS algorithm applied to
hard instance of combinatorial optimisation problem:

P(solve)

rel. soln.
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Solution quality distributions for various run-times:

relative solution quality [%]
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Typical solution quality distributions for SLS algorithm applied
to hard instance of combinatorial optimisation problem:

P(solve)

rel. soln.
quality [%]
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Typical SQT curves for SLS optimisation algorithms applied to
instance of hard combinatorial optimisation problem:
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Typical SQT curves for SLS optimisation algorithms applied to
instance of hard combinatorial optimisation problem:
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SQT: Solution Quality over Time
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Mixed Integer (Linear) Program

33

max c|x+ h|y
Ax+Gy  b

x � 0 and integer, y � 0

A 2 Rm⇥n, G 2 Rm⇥p, b 2 Rm⇥1, c 2 Rn⇥1, h 2 Rp⇥1

x 2 Rn⇥1, y 2 Rp⇥1
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7.4 LP-Based Branch and Bound 121

Initialization
Initial problem S with

reformulation P on list
Z = −∞

Incumbent x∗ void

Call primal heuristic
If solution xH of value ZH ,

Z = ZH , x∗ = xH

Return two subproblems Si
1 and Si

2
with formulations P i

1 and P i
2

and upper bounds Z
i

Y

If xi(LP ) integer, update primal bound
Z = Z

i and incumbent x∗ = xi(LP )
Prune by optimality

Y

Y

Y

Y

N

N

N

N

N

If Z
i ≤ Z, prune by bound

If P i is empty, prune by infeasibility

Solve LP relaxation over P i

Dual bound Z
i = LP value

xi(LP ) = LP solution

Remove problem from listSi

with formulation P i

and dual bound Z
i

If Z
i ≤ Z, prune by bound

Y

List
Empty? STOP

Incumbent optimal

Figure 7.10 Branch-and-bound flow chart.

Pruning rule

Pruning rule

Pruning rule

Primal heuristic

Node selection

Solving LP Relaxation

Pruning rule

Branching variable selection

Termination criterion
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